US20090064854A1 - Cocking device for machine guns - Google Patents

Cocking device for machine guns Download PDF

Info

Publication number
US20090064854A1
US20090064854A1 US11/720,336 US72033605A US2009064854A1 US 20090064854 A1 US20090064854 A1 US 20090064854A1 US 72033605 A US72033605 A US 72033605A US 2009064854 A1 US2009064854 A1 US 2009064854A1
Authority
US
United States
Prior art keywords
cocking
chet
bolt
cable
handle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/720,336
Inventor
Gadi Mamet
Shimon Chachamian
Yehuda Kiperwas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20090064854A1 publication Critical patent/US20090064854A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A19/00Firing or trigger mechanisms; Cocking mechanisms
    • F41A19/06Mechanical firing mechanisms, e.g. counterrecoil firing, recoil actuated firing mechanisms
    • F41A19/25Mechanical firing mechanisms, e.g. counterrecoil firing, recoil actuated firing mechanisms having only slidably-mounted striker elements, i.e. percussion or firing pins

Definitions

  • the present invention relates to auxiliary appliances for machine guns. More specifically, the application relates to an electromechanical appliance for cocking the bolt of a machine gun or light cannon.
  • the bolt of a gun has to be cocked to a rear position in order to begin the cycle of ammunition round firing.
  • the cocking of the bolt brings it to an engaged position by urging it against a spring.
  • the bolt or bolt assembly is released from its rear position to insert a cartridge in the firing chamber of the gun and then to remove the unfired cartridge or the empty case after the round is fired.
  • the bolt fits in the gun behind the firing chamber.
  • a handle is fitted into the bolt.
  • Auxiliary systems for cocking are presented in the present invention as will be described below.
  • FIG. 1 is a schematic view of the system of the invention showing a gun and a part of the cocking device;
  • FIG. 2 is an enlarged view of a part of the cocking device showing the CHET slider and associated pulley;
  • FIG. 3 is another view of the CHET sliding device showing the cable with the CHET slider removed;
  • FIG. 4 is another view of the CHET sliding with the CHET slider removed, and the cable partially retracted;
  • FIG. 5 is a view as in FIG. 4 with the cable almost fully retracted and CHET inclined forwards;
  • FIG. 6A is a view of the CHET sliding device with an opposite positioning along the gun, and cable drawn by the auxiliary operator's cocking handle;
  • FIG. 6B is from the same view as in FIG. 6A with the cable drawn by the spool (not shown);
  • FIG. 7A is a sequence diagram of the steps applied in cocking a Browning 0.5 (12.7 mm) bolt
  • FIG. 7B is a sequence diagram of the steps applied in cocking a FN MAG with system of the invention.
  • FIG. 8 is a schematic diagram showing a proximity sensor and a CHET in a fully drawn position
  • FIG. 9A is a sequence diagram of the electrical actuation scheme of the spool actuator.
  • FIG. 9B is a sequence diagram of the manual drawing of the CHET.
  • FIG. 10 is a schematic description of the cable connection to the spool
  • FIG. 11A is a schematic description of the cam of the CHET slider
  • FIG. 11B is a schematic description of two positions of a CHET in the CHET slider
  • FIG. 11C is a schematic description of a CHET in a released cocking handle position.
  • the present invention provides a mechanism for applying mechanical force to cock a bolt of a machine gun or light cannon.
  • the electrically operated mechanical cocking of the invention more than a matter of convenience.
  • the electrical actuation of the cocking procedure enables the operator to operate the weapon without needing to actually handle the weapon's ammunition feed and firing control.
  • the covered operator may actuate a mounted weapon on top of a personnel carrier, thus obviating unnecessary exposure at loading and cocking.
  • the device of the invention is electrically operated and controlled either by the person operating the gun or by any other operator.
  • the device of the invention is versatile with respect to the fact that it can be adapted to more than one type of gun or light cannon. To describe the device of the invention, reference is first made to FIG. 1 .
  • Schematically described machine gun 20 contains an internal bolt (not shown).
  • Bolt handle 22 is attached to the internal bolt.
  • Bolt handle engaging tongue 24 is mounted in a groove (not shown) and is slidable in parallel to the gun.
  • Auxiliary operator's cocking handle (AOCH) 26 is connected by cocking cable 28 indirectly to bolt handle engaging tongue 24 .
  • the bolt handle is also a cocking handle
  • the bolt handle engaging tongue is also a cocking handle engaging tongue (CHET).
  • Bolt handle 22 is engageable by CHET 24 .
  • CHET 24 is slidable within groove 34 of CHET slider 36 , which is composed of two parallel, longitudinal halves.
  • Pivot 38 of pulley 40 is engageable with CHET 24 .
  • Pivot 38 pushes CHET 24 as is explained below.
  • the bolt handle can be used by the operator manually by pulling a handle. This is relevant when the operator cannot or does not want to use the electrical actuation.
  • FIG. 3 To explain the duality of electrical and manual actuation of the cocking system of the invention, reference is first made to FIG. 3 .
  • cable 28 is shown, connected at one end to auxiliary cocking handle 26 , wrapped around pulley 40 , and continues in sheathed portion 46 .
  • Pivot 38 abuts CHET 24 .
  • CHET 24 pushes bolt handle 22 in the same direction. Further pulling of bolt handle 22 is described in FIG. 5 to which reference is now made.
  • CHET 24 has reached a certain point along its pulling track, it no longer stands firmly against bolt handle 22 .
  • CHET 24 yields to the force exerted by bolt handle 22 , turning in the direction that allows the return of the bolt (or bolt assembly) and/or bolt handle 22 in the forward direction. At this point, the bolt is held back, ready to thrust forward, without being hindered by the cocking handle engaging tongue (CHET).
  • the cocking assembly is convertible from a right hand to a left hand orientation. Accordingly, in FIG. 6A a left hand cocking assembly is shown with AOCH 26 pulled to the extreme, and cocking cable 28 pulled out accordingly. Bolt handle 22 in this case is fully retracted. In FIG. 6B cable 28 has been pulled by a spool 62 that winds the cable 28 , pulling it through the sheath 46 .
  • the system of the invention is versatile in respect to the fact that the CHET module is engageable in both right hand side cocking handles and left hand side cocking handle gun assemblies.
  • the sequence of steps followed in applying the system of the invention to a Browning 0.5 left hand side cocking handle is described in the flow chart of FIG. 7A .
  • the process begins in step 80 in which the cocking handle is pulled backwards by the engaging tongue.
  • step 82 the bolt is pulled back maximally and cocked, and then the CHET is released.
  • the bolt assembly (referred to also as bolt for short), returns forwards, and the CHET returns independently forwards in step 86 .
  • firing can commence at step 88 .
  • a CHET spring returns the CHET by pulling it forwards away from its rear position, after the bolt assembly is released.
  • the bolt is cocked by a cocking handle unattached to the bolt. Rather, it abuts the front face of the bolt, and when pulled backwards it cocks the bolt.
  • the cocking handle must be returned to its forward facing position before the bolt assembly thrusts forwards in order to prevent it from damage by the forward thrust of the bolt.
  • the sequence of steps is carried out in respect to a FN MAG gun with a left hand cocking handle.
  • step 94 the cocking handle is pulled backwards to its rearmost position by the action of the cocking handle engaging tongue CHET.
  • step 96 the bolt assembly is cocked, and in step 98 the CHET returns forwards with the cocking handle.
  • the bolt is released to its forward position, and in step 102 firing commences.
  • the proximity sensor senses the arrival of the CHET to its rearmost positioning.
  • proximity sensor 120 when reached by CHET 24 issues a signal to the reel actuator (not shown) to revolve in order to wind the slacked cable.
  • the signaling of the proximity sensor and the response of the reel actuator are further explained with reference to FIGS. 9A-B .
  • the sequence of events as described in FIG. 9A is as follows: in step 126 the spool actuator is turned on, and in step 128 the spool winds. As a result, the CHET is pulled to the back of the gun in step 130 until the proximity sensor senses the CHET in step 132 .
  • the proximity sensor then sends a signal to the spool actuator, turning it off in step 134 .
  • the electric actuator is not activated, and manual pull for cocking is performed as described in FIG. 9B .
  • the AOCH is pulled manually, driving the CHET backwards in step 142 .
  • the backward driving brings the CHET in step 144 into contact with the proximity sensor which responds by issuing a signal accordingly.
  • the actuator is turned on in step 146 winding the slack cable on the spool in step 148 .
  • the proximity sensor activates a flip-flop circuit, toggling the spool actuator between either of two states being “rest” or “wind”, in which whatever the state of the actuator is, it is changed to the other state by the signal provided by the proximity sensor.
  • FIG. 10 to which reference is now made a layout of the electrical actuation assembly is described schematically, with the gun removed. Electrical actuator 152 upon energizing, rotates spool 154 . The spool winds cable 28 , a portion of which is sheathed 46 . The winding of the cable subsequently pulls the CHET (not shown) to a rear position.
  • FIGS. 11A-C Another aspect of the invention involves the forward movement of the CHET, within the CHET slider and is described with reference to FIGS. 11A-C .
  • the CHET moves slidably within a grooved CHET slider.
  • the slider includes two parallel portions the inner side of which contains a cam, as described schematically in FIG. 11A to which reference is now made.
  • the distal portion of CHET slider 36 (of FIG. 2 ), meaning the parallel half located away from the gun, is designated 170 .
  • a cam 172 within the inner looking face of the half rail harbors a pawl 174 movable along the cam 172 as indicated by double headed arrow 176 , such that it can occupy a position as designated 178 .
  • CHET 180 is attached to pawl 174 .
  • the bottom part of the CHET is shown cut to expose pawl 174 , whereas its upper part is notched.
  • CHET 180 is inclined forwards.
  • CHET 180 stands upright.
  • the drawing is not realistic with respect of the fact that in practice there is only one CHET present, so that the described double CHET is provided purely for the sake of illustrating the movement along or in parallel to arrow 184 , as pawl 174 moves in cam 172 .
  • CHET spring 188 urges the CHET to move forwards as the force applied by the either the AOCH or the spool actuator ceases.
  • the CHET always moves forward when the applied force ceases.
  • the CHET moves together with the cocking handle which is typically a bolt handle.
  • the CHET spring that drives the cocking handle forwards, ready to be pulled backwards again when force is applied by way of the cocking cable.
  • pawl 174 has reached a position in cam 172 in which notched CHET 180 , to which it is attached, has inclined forwards in the direction of arrow 185 . In this position, the cocking handle 190 is free to be drawn forwards in the direction of arrow 185 .
  • CHET 180 is driven by the spring, not shown in this case.

Abstract

A cocking system for light cannons and machine guns providing an electrical actuation option to an otherwise manual actuation mechanism. The mechanism of the invention employs a pivot of a pulley that engages a cocking handle engaging tongue slidable along a grooved slider. The pulley, around which a cocking cable is wrapped, is pulled by either an auxiliary manual cocking handle, or by an electrical motor. As the engaging tongue is pulled backwards, in a certain point it inclines forwards allowing the forward movement of the cocking handle. The cocking assembly is adapted to both left hand and right hand cocking handle applications. In some embodiments the engaging tongue returns the coking handles to its forward position.

Description

    FIELD OF THE INVENTION
  • The present invention relates to auxiliary appliances for machine guns. More specifically, the application relates to an electromechanical appliance for cocking the bolt of a machine gun or light cannon.
  • BACKGROUND OF THE INVENTION
  • The bolt of a gun has to be cocked to a rear position in order to begin the cycle of ammunition round firing. The cocking of the bolt brings it to an engaged position by urging it against a spring. The bolt or bolt assembly is released from its rear position to insert a cartridge in the firing chamber of the gun and then to remove the unfired cartridge or the empty case after the round is fired. The bolt fits in the gun behind the firing chamber. For the purpose of manual cocking, a handle is fitted into the bolt. Auxiliary systems for cocking are presented in the present invention as will be described below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of the system of the invention showing a gun and a part of the cocking device;
  • FIG. 2 is an enlarged view of a part of the cocking device showing the CHET slider and associated pulley;
  • FIG. 3 is another view of the CHET sliding device showing the cable with the CHET slider removed;
  • FIG. 4 is another view of the CHET sliding with the CHET slider removed, and the cable partially retracted;
  • FIG. 5 is a view as in FIG. 4 with the cable almost fully retracted and CHET inclined forwards;
  • FIG. 6A is a view of the CHET sliding device with an opposite positioning along the gun, and cable drawn by the auxiliary operator's cocking handle;
  • FIG. 6B is from the same view as in FIG. 6A with the cable drawn by the spool (not shown);
  • FIG. 7A is a sequence diagram of the steps applied in cocking a Browning 0.5 (12.7 mm) bolt;
  • FIG. 7B is a sequence diagram of the steps applied in cocking a FN MAG with system of the invention;
  • FIG. 8 is a schematic diagram showing a proximity sensor and a CHET in a fully drawn position;
  • FIG. 9A is a sequence diagram of the electrical actuation scheme of the spool actuator;
  • FIG. 9B is a sequence diagram of the manual drawing of the CHET;
  • FIG. 10 is a schematic description of the cable connection to the spool;
  • FIG. 11A is a schematic description of the cam of the CHET slider;
  • FIG. 11B is a schematic description of two positions of a CHET in the CHET slider;
  • FIG. 11C is a schematic description of a CHET in a released cocking handle position.
  • DETAILED DESCRIPTION OF THE PRESENT INVENTION
  • The present invention provides a mechanism for applying mechanical force to cock a bolt of a machine gun or light cannon. The electrically operated mechanical cocking of the invention more than a matter of convenience. The electrical actuation of the cocking procedure enables the operator to operate the weapon without needing to actually handle the weapon's ammunition feed and firing control. For example, the covered operator may actuate a mounted weapon on top of a personnel carrier, thus obviating unnecessary exposure at loading and cocking. The device of the invention is electrically operated and controlled either by the person operating the gun or by any other operator. The device of the invention is versatile with respect to the fact that it can be adapted to more than one type of gun or light cannon. To describe the device of the invention, reference is first made to FIG. 1. Schematically described machine gun 20 contains an internal bolt (not shown). Bolt handle 22 is attached to the internal bolt. Bolt handle engaging tongue 24 is mounted in a groove (not shown) and is slidable in parallel to the gun. Auxiliary operator's cocking handle (AOCH) 26 is connected by cocking cable 28 indirectly to bolt handle engaging tongue 24. In this case the bolt handle is also a cocking handle, and the bolt handle engaging tongue is also a cocking handle engaging tongue (CHET).
  • To explain the system for cocking the bolt in accordance with the invention, reference is made now to FIG. 2, in which the majority of the bolt handle and cable are not shown. Bolt handle 22 is engageable by CHET 24. CHET 24 is slidable within groove 34 of CHET slider 36, which is composed of two parallel, longitudinal halves. Pivot 38 of pulley 40 is engageable with CHET 24. Pivot 38 pushes CHET 24 as is explained below. The bolt handle can be used by the operator manually by pulling a handle. This is relevant when the operator cannot or does not want to use the electrical actuation. To explain the duality of electrical and manual actuation of the cocking system of the invention, reference is first made to FIG. 3. In this figure cable 28 is shown, connected at one end to auxiliary cocking handle 26, wrapped around pulley 40, and continues in sheathed portion 46. Pivot 38 abuts CHET 24. As is inferred from the schematic description in FIG. 4, as AOCH 26 is pulled by the operator in the direction of arrow 54 away from the barrel, CHET 24 pushes bolt handle 22 in the same direction. Further pulling of bolt handle 22 is described in FIG. 5 to which reference is now made. When CHET 24 has reached a certain point along its pulling track, it no longer stands firmly against bolt handle 22. At this point, CHET 24 yields to the force exerted by bolt handle 22, turning in the direction that allows the return of the bolt (or bolt assembly) and/or bolt handle 22 in the forward direction. At this point, the bolt is held back, ready to thrust forward, without being hindered by the cocking handle engaging tongue (CHET). The entire scenario is applicable in guns having an opposite longitudinal asymmetry. Moreover, in a preferred embodiment of the invention, the cocking assembly is convertible from a right hand to a left hand orientation. Accordingly, in FIG. 6A a left hand cocking assembly is shown with AOCH 26 pulled to the extreme, and cocking cable 28 pulled out accordingly. Bolt handle 22 in this case is fully retracted. In FIG. 6B cable 28 has been pulled by a spool 62 that winds the cable 28, pulling it through the sheath 46.
  • The system of the invention is versatile in respect to the fact that the CHET module is engageable in both right hand side cocking handles and left hand side cocking handle gun assemblies. The sequence of steps followed in applying the system of the invention to a Browning 0.5 left hand side cocking handle is described in the flow chart of FIG. 7A. The process begins in step 80 in which the cocking handle is pulled backwards by the engaging tongue. In step 82 the bolt is pulled back maximally and cocked, and then the CHET is released. In step 84, the bolt assembly (referred to also as bolt for short), returns forwards, and the CHET returns independently forwards in step 86. Once the bolt assembly has returned forwards, firing can commence at step 88. Several more components of the cocking system of the invention play a part in the process. A CHET spring returns the CHET by pulling it forwards away from its rear position, after the bolt assembly is released.
  • In some guns notably, FN MAG-58, the bolt is cocked by a cocking handle unattached to the bolt. Rather, it abuts the front face of the bolt, and when pulled backwards it cocks the bolt. The cocking handle must be returned to its forward facing position before the bolt assembly thrusts forwards in order to prevent it from damage by the forward thrust of the bolt. Accordingly, in another embodiment of the invention, as described schematically in FIG. 7B to which reference is mow made, the sequence of steps is carried out in respect to a FN MAG gun with a left hand cocking handle. In step 94 the cocking handle is pulled backwards to its rearmost position by the action of the cocking handle engaging tongue CHET. In step 96 the bolt assembly is cocked, and in step 98 the CHET returns forwards with the cocking handle. In step 100 the bolt is released to its forward position, and in step 102 firing commences.
  • The proximity sensor senses the arrival of the CHET to its rearmost positioning. In the case of an electrical actuation, as in FIG. 8 to which reference is now made, proximity sensor 120 when reached by CHET 24 issues a signal to the reel actuator (not shown) to revolve in order to wind the slacked cable. The signaling of the proximity sensor and the response of the reel actuator are further explained with reference to FIGS. 9A-B. In an electrical pull for the actuation of the reel, the sequence of events as described in FIG. 9A is as follows: in step 126 the spool actuator is turned on, and in step 128 the spool winds. As a result, the CHET is pulled to the back of the gun in step 130 until the proximity sensor senses the CHET in step 132. The proximity sensor then sends a signal to the spool actuator, turning it off in step 134. In a different scenario, the electric actuator is not activated, and manual pull for cocking is performed as described in FIG. 9B. In step 140, the AOCH is pulled manually, driving the CHET backwards in step 142. The backward driving brings the CHET in step 144 into contact with the proximity sensor which responds by issuing a signal accordingly. As a result, the actuator is turned on in step 146 winding the slack cable on the spool in step 148. To summarize, the proximity sensor activates a flip-flop circuit, toggling the spool actuator between either of two states being “rest” or “wind”, in which whatever the state of the actuator is, it is changed to the other state by the signal provided by the proximity sensor. In FIG. 10 to which reference is now made, a layout of the electrical actuation assembly is described schematically, with the gun removed. Electrical actuator 152 upon energizing, rotates spool 154. The spool winds cable 28, a portion of which is sheathed 46. The winding of the cable subsequently pulls the CHET (not shown) to a rear position.
  • Another aspect of the invention involves the forward movement of the CHET, within the CHET slider and is described with reference to FIGS. 11A-C. As mentioned above the CHET moves slidably within a grooved CHET slider. The slider includes two parallel portions the inner side of which contains a cam, as described schematically in FIG. 11A to which reference is now made. The distal portion of CHET slider 36 (of FIG. 2), meaning the parallel half located away from the gun, is designated 170. A cam 172 within the inner looking face of the half rail harbors a pawl 174 movable along the cam 172 as indicated by double headed arrow 176, such that it can occupy a position as designated 178. At this location the cam curls up such that the pawl lifts up when reaching that portion of the cam. As described schematically in FIG. 11B, CHET 180 is attached to pawl 174. The bottom part of the CHET is shown cut to expose pawl 174, whereas its upper part is notched. At this rear position designated 182, CHET 180 is inclined forwards. In Contrast, in the forward position of the CHET designated 182, CHET 180 stands upright. The drawing is not realistic with respect of the fact that in practice there is only one CHET present, so that the described double CHET is provided purely for the sake of illustrating the movement along or in parallel to arrow 184, as pawl 174 moves in cam 172. The drive for the movement of pawl 174, CHET 180 and cocking handle 190 is provided by pivot 38, described above in connection with FIG. 2. CHET spring 188 urges the CHET to move forwards as the force applied by the either the AOCH or the spool actuator ceases.
  • Functionally, the CHET always moves forward when the applied force ceases. In cases in which the bolt moves forwards after being pulled backwards, such as in Browning 12.7 mm machine gun, the CHET moves together with the cocking handle which is typically a bolt handle. In such cases as the cocking handle does not move automatically forwards when the force pulling back the bolt ceases, it is the CHET spring that drives the cocking handle forwards, ready to be pulled backwards again when force is applied by way of the cocking cable. In FIG. 11C pawl 174 has reached a position in cam 172 in which notched CHET 180, to which it is attached, has inclined forwards in the direction of arrow 185. In this position, the cocking handle 190 is free to be drawn forwards in the direction of arrow 185. In the case that the cocking handle is left idle after being pulled backwards, CHET 180 is driven by the spring, not shown in this case.

Claims (7)

1. A bolt cocking system for machine guns and light cannons employing a bolt assembly, adapted for electrical and manual actuation mechanisms, said system comprising:
a cocking handle engaging tongue (CHET) slidable along a CHET slider for at least pulling a bolt assembly of said bolt assembly;
a pulley around which a cocking cable is wrapped;
a pivot of said pulley for engaging with said CHET;
a spool to which one end of said cable is connected for winding said cocking cable;
a spring for urging said CHET forwards;
an electric actuator for rotating said spool, and
an auxiliary cocking handle for performing manual cocking.
2. A bolt cocking system for machine guns and light cannons as in claim 1 and wherein said CHET is rotatable forwards to enable return of a cocking handle of said bolt assembly driven by a CHET spring.
3. A bolt cocking system for machine guns and light cannons as in claim 1 and wherein said CHET module is engageable in both right hand side cocking handles and left hand side cocking handle gun assemblies
4. A bolt cocking system for machine guns and light cannons as in claim 1 and wherein a proximity sensor senses the arrival of said CHET to its rearmost position.
5. A bolt cocking system for machine guns and light cannons as in claim 4 and wherein the proximity sensor actuates a spool for winding a loose cocking cable.
6. A bolt cocking system for machine guns and light cannons as in claim 4 and wherein said proximity sensor stops a spool from winding a cocking cable.
7. A method for cocking a bolt of a machine gun wherein a cable pulling a cocking handle engaging tongue (CHET), slidable along a slider, pulls said bolt backwards, and wherein the drive for actuating said cable pulling is selected from a group containing a manual pull and an electric pull, and wherein a proximity sensor senses the arrival of said CHET to its rearmost position and when doing so, it toggles the condition of a spool to which the cable is windably attached.
US11/720,336 2004-11-29 2005-11-27 Cocking device for machine guns Abandoned US20090064854A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IL165444 2004-11-29
IL165444A IL165444A (en) 2004-11-29 2004-11-29 Cocking device for machine guns
PCT/IL2005/001259 WO2006056991A2 (en) 2004-11-29 2005-11-27 Cocking device for machine guns

Publications (1)

Publication Number Publication Date
US20090064854A1 true US20090064854A1 (en) 2009-03-12

Family

ID=36498352

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/720,336 Abandoned US20090064854A1 (en) 2004-11-29 2005-11-27 Cocking device for machine guns

Country Status (3)

Country Link
US (1) US20090064854A1 (en)
IL (1) IL165444A (en)
WO (1) WO2006056991A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542680C1 (en) * 2013-12-30 2015-02-20 Открытое акционерное общество "Конструкторское бюро приборостроения им. академика А.Г. Шипунова" Gun reloader
US11279600B1 (en) * 2019-07-09 2022-03-22 Itool Equipment Holding Llc Switching assembly for rope-pulling equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2683710C (en) * 2007-04-20 2015-02-24 Kongsberg Defence & Aerospace As Firearm remote cocking method and arrangement

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386801A (en) * 1942-09-16 1945-10-16 Clifford E Johnson Gun cocking device
US2413113A (en) * 1942-11-05 1946-12-24 Bendix Aviat Corp Automatic gun charger
US2448024A (en) * 1945-03-15 1948-08-31 William T Golden Machine gun firing rate control mechanism
US2572612A (en) * 1944-11-08 1951-10-23 Bendix Aviat Corp Automatic gun charger
US2789466A (en) * 1953-03-06 1957-04-23 Stanley E Summers Manual gun charger
US2845001A (en) * 1955-11-30 1958-07-29 Robert L Hillberg Manual charger for a firearm
US3181423A (en) * 1961-02-17 1965-05-04 John G Rocha Motor driven automatic gun
US4796512A (en) * 1986-10-13 1989-01-10 Rheinmetall Gmbh Externally driven automatic weapon
US20050262992A1 (en) * 2002-09-03 2005-12-01 Wolfgang Becker Device for electrically controlling an automatic weapon

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386801A (en) * 1942-09-16 1945-10-16 Clifford E Johnson Gun cocking device
US2413113A (en) * 1942-11-05 1946-12-24 Bendix Aviat Corp Automatic gun charger
US2572612A (en) * 1944-11-08 1951-10-23 Bendix Aviat Corp Automatic gun charger
US2448024A (en) * 1945-03-15 1948-08-31 William T Golden Machine gun firing rate control mechanism
US2789466A (en) * 1953-03-06 1957-04-23 Stanley E Summers Manual gun charger
US2845001A (en) * 1955-11-30 1958-07-29 Robert L Hillberg Manual charger for a firearm
US3181423A (en) * 1961-02-17 1965-05-04 John G Rocha Motor driven automatic gun
US4796512A (en) * 1986-10-13 1989-01-10 Rheinmetall Gmbh Externally driven automatic weapon
US20050262992A1 (en) * 2002-09-03 2005-12-01 Wolfgang Becker Device for electrically controlling an automatic weapon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542680C1 (en) * 2013-12-30 2015-02-20 Открытое акционерное общество "Конструкторское бюро приборостроения им. академика А.Г. Шипунова" Gun reloader
US11279600B1 (en) * 2019-07-09 2022-03-22 Itool Equipment Holding Llc Switching assembly for rope-pulling equipment

Also Published As

Publication number Publication date
IL165444A (en) 2009-11-18
WO2006056991A2 (en) 2006-06-01
WO2006056991A3 (en) 2006-11-30
IL165444A0 (en) 2006-01-15

Similar Documents

Publication Publication Date Title
US7694448B2 (en) Recoil shock device in toy gun
US4899717A (en) Airgun
EP2113736B1 (en) Recoil shock device in toy gun
US8127753B1 (en) Toy projectile launcher
US9389042B1 (en) Projectile launchers
US8931467B2 (en) Magazine rifle
EP2267394B1 (en) Toy gun
EP3424575B1 (en) Toy gun
JP2709912B2 (en) Continuous launchers and guns or toy guns
US10359254B1 (en) Crossbow with built in electric cocking
US20090064854A1 (en) Cocking device for machine guns
US11131524B1 (en) Crossbow with integral cocking and a moving latch
JPH03221793A (en) Automatic air gun
US4883042A (en) Air guns
JP2006300462A (en) Electric gun
JP2006300464A (en) Electric gun
JP2517539B2 (en) Electric air gun
JP4241314B2 (en) Launch mode switching device for electric air gun
US11874085B2 (en) Trigger-traverse crossbow
US3427925A (en) Actuating device for automatic firearms
JP4745021B2 (en) Nozzle drive mechanism in simulated gun bullet launcher
US2372327A (en) Eiring-control mechanism
US4784036A (en) Automatic cannon and fire control mechanism
JP4745011B2 (en) Device for controlling the number of firings in an electric gun
JP2769781B2 (en) Electric automatic air gun that can be switched manually

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE