US20070193740A1 - Monitoring formation properties - Google Patents

Monitoring formation properties Download PDF

Info

Publication number
US20070193740A1
US20070193740A1 US11/555,985 US55598506A US2007193740A1 US 20070193740 A1 US20070193740 A1 US 20070193740A1 US 55598506 A US55598506 A US 55598506A US 2007193740 A1 US2007193740 A1 US 2007193740A1
Authority
US
United States
Prior art keywords
sensor
formation
tubular element
pressure
wellbore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/555,985
Inventor
Edwinus QUINT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/555,985 priority Critical patent/US20070193740A1/en
Assigned to SHELL OIL COMPANY reassignment SHELL OIL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: QUINT, EDWINUS NICOLAAS MARIA
Publication of US20070193740A1 publication Critical patent/US20070193740A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/119Details, e.g. for locating perforating place or direction
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure

Definitions

  • the present invention relates to a method and apparatus for monitoring properties in a formation traversed by at least one wellbore.
  • Formation pressures can be measured using a variety of methods. The most common method involves running a wireline formation pressure tester (FPT) in either an open or cased hole completion. This method requires drilling into the formation or shooting a hole in the casing. The FPT method works well in permeable formations; however, it is limited to one data point for pressure at a specified time. Obtaining multiple data points is desirable because it is difficult to determine whether a pressure measurement reflects the virgin formation pressure or pressure after depletion. In addition, having a number of measurements over an extended period of time allows for identification of depletion even if the actual virgin formation pressure is unknown.
  • FPT wireline formation pressure tester
  • the traditional FPT method has limits because it takes a long time to build up to the formation pressure.
  • the method is less accurate in formations prone to a phenomenon known as supercharging.
  • Supercharging is the increase of formation pressure around the wellbore as a result of exposure to the higher pressure from the mud used in the drilling process.
  • the mudcake fails to adequately hold the drilling fluid in the wellbore, causing drilling fluid to penetrate the formation and create a high-pressure or “super-charged” zone.
  • Using the FPT method under these conditions may require extrapolation or yield an inaccurate data point for pressure that is between the mud pressure and the formation pressure.
  • DFIT diagnostic formation injection test
  • U.S. Pat. No. 5,467,823 discloses a method and apparatus of monitoring subsurface formations containing at least one fluid reservoir and traversed by at least one well.
  • the method includes lowering a sensor to a depth level corresponding to the reservoir, positioning the sensor at this depth while isolating the section of the well where the sensor is located from the rest of the well and providing fluid communication between the sensor and the reservoir. Because this system requires isolating the section of the well where the sensor is located from the rest of the well, this could not serve as a long-term pressure measurement option. In addition, the chances of maintaining pressure isolation while achieving communication to surface over the wireline with multiple sensors are remote.
  • the present inventions include a method for monitoring pressure in a formation traversed by at least one wellbore comprising providing a tubular element having an outside surface, attaching a perforating gun oriented in such a way that when fired, the perforating gun does not damage the tubular element, connecting a sensor to the perforating gun in close proximity to the perforating gun wherein the sensor is exposed to the wellbore, inserting the tubular element into the wellbore, securing the tubular element in the wellbore, firing the perforating gun to penetrate the formation, exposing the sensor to the formation pressure, and monitoring the pressure in the formation with the sensor to obtain pressure data.
  • the present inventions also include an apparatus for monitoring pressure in a formation traversed by at least one wellbore lined with casing comprising a wireless communications module mounted on the outside of the casing, a perforating gun oriented away from the casing mounted on the outside of the casing, and a sensor mounted on the outside of the casing wherein the sensor is not protected from overpressure.
  • FIG. 1 illustrates a perspective view of one embodiment of the pressure monitoring apparatus.
  • FIG. 2 illustrates a side view of one embodiment of the pressure monitoring apparatus installed in a wellbore.
  • FIG. 3 shows a top view of the wellbore illustrating the direction of the perforations.
  • FIG. 4 illustrates a side view of another embodiment of the pressure monitoring apparatus installed in a wellbore.
  • FIG. 1 shows one embodiment of an apparatus for monitoring formation properties.
  • tubular element 101 is a section of casing, liner, or other material used to maintain the integrity of the wellbore.
  • Tubular element 101 may also be a section of tubing, cement stinger, or other device used to lower equipment into a wellbore.
  • Perforating gun 102 and sensor 103 are mounted on the outside of tubular element 101 in close proximity to one another. Perforating gun 102 and sensor 103 may be connected either directly or via additional tubulars or hoses.
  • any type of sensor may be used including, for example, strain gauges, quartz gages, and other conventional sensing devices.
  • the embodiments in this application discuss using a pressure sensor; however, sensors that measure other well properties could be employed.
  • Wireless communications module 104 is shown connected to tubular element 101 .
  • Wireless telemetry technology is known in the industry and may be used to transmit data gathered downhole to surface production facilities.
  • wireless communications module 104 transmits the pressure data gathered from sensor 103 real time to the surface.
  • FIG. 3 depicts the top view of the apparatus in the wellbore to indicate the direction of the perforations.
  • Shape charges 301 are shown connected to perforating gun 102 . When fired, shaped charges 301 penetrate cement 203 and formation 202 according to paths 302 thereby exposing sensor 103 to the formation pressure.
  • tubular element 101 remains intact and sensor 103 is not damaged even though it is in direct pressure communication with the gun and not protected from the pressure shock generated by the firing of the gun (referred to as “overpressure” in the industry).
  • Sensor 103 gathers data, which is transmitted to surface unit 205 by wireless communication module 104 , thus providing pressure data without the need to drill a dedicated observation well or compromise casing integrity.
  • FIG. 4 depicts a hard-wired embodiment that is installed on the outside of a section of casing.
  • Wellbore 401 is shown traversing formation 402 .
  • First apparatus 403 and second apparatus 404 are shown mounted on the outside of casing 405 .
  • First apparatus 403 and second apparatus 404 are connected by wire 406 , which extends to the surface (not shown).
  • First apparatus 403 and second apparatus 404 consist of perforating guns ( 407 and 410 ), sensors ( 408 and 411 ), and communications modules ( 409 and 412 ). The entire apparatus is secured in the wellbore using cement 413 .
  • the data collected by sensors 408 and 411 is transmitted using wire 406 to the surface (not shown).
  • Transmission with a wire may be less reliable than using wireless communication because the wire might be damaged during placement in the hole or when zones are perforated for production.
  • hard-wired transmission systems are advantageous because they provide higher frequency data, can transmit data for longer periods, and enable deeper measurements to be ontained.
  • the wire may also be used to fire the perforating guns.
  • some embodiments of the invention may also be useful in high permeability reservoirs.
  • multiple reservoirs penetrated by a single wellbore are produced and managed separately because of legal or reservoir management requirements.
  • Some embodiments of the present invention enable the operator to have a single well produce one horizon, while acting as a pressure observation well for one or more other reservoirs, thus obviating the need to drill dedicated pressure observers.

Abstract

A method for monitoring pressure in a formation traversed by at least one wellbore comprising providing a tubular element having an outside surface, attaching a perforating gun oriented in such a way that when fired, the perforating gun does not damage the tubular element, connecting a sensor to the perforating gun in close proximity to the perforating gun wherein the sensor is exposed to the wellbore, inserting the tubular element into the wellbore, securing the tubular element in the wellbore, firing the perforating gun to penetrate the formation, exposing the sensor to the formation pressure, and monitoring the pressure in the formation with the sensor to obtain pressure data.

Description

  • The present application claims the benefit of pending U.S. Provisional Patent Application Ser. No. 60/733,461 filed Nov. 4, 2005 the entire disclosure of which is hereby incorporated by reference.
  • FIELD OF INVENTION
  • The present invention relates to a method and apparatus for monitoring properties in a formation traversed by at least one wellbore.
  • BACKGROUND
  • In the oil and gas industry, the sampling of fluids and measuring formation pressure in the porous strata of the formation being drilled can provide valuable information about the formation and its ability to yield oil and/or gas. Formation pressure is one of the key properties that engineers, geologists, and petrophysicists use to characterize the mobility of oil and gas formations and estimate reserves. Formation pressure data can be collected at specific times throughout the life of the well or it can be monitored on a long-term basis. Ideally, operators would like to be able to obtain a real time pressure profile of the well over its lifetime to aid in optimization of production.
  • Formation pressures can be measured using a variety of methods. The most common method involves running a wireline formation pressure tester (FPT) in either an open or cased hole completion. This method requires drilling into the formation or shooting a hole in the casing. The FPT method works well in permeable formations; however, it is limited to one data point for pressure at a specified time. Obtaining multiple data points is desirable because it is difficult to determine whether a pressure measurement reflects the virgin formation pressure or pressure after depletion. In addition, having a number of measurements over an extended period of time allows for identification of depletion even if the actual virgin formation pressure is unknown.
  • In tighter, less permeable formations, the traditional FPT method has limits because it takes a long time to build up to the formation pressure. In addition, the method is less accurate in formations prone to a phenomenon known as supercharging. Supercharging is the increase of formation pressure around the wellbore as a result of exposure to the higher pressure from the mud used in the drilling process. In supercharged reservoirs, the mudcake fails to adequately hold the drilling fluid in the wellbore, causing drilling fluid to penetrate the formation and create a high-pressure or “super-charged” zone. Using the FPT method under these conditions may require extrapolation or yield an inaccurate data point for pressure that is between the mud pressure and the formation pressure.
  • Another method used in tighter formations is the diagnostic formation injection test (DFIT). In this method, the formation is pressured up, a fracture is created beyond the supercharged area and the pressure fall off back to the formation pressure is monitored. Usually pressure is measured at the surface and the accuracy is within hundredths of psi. A gauge may also be placed downhole to obtain a more accurate measurement; however, in tight formations, it is still a challenge to get an accurate measurement within 100 psi.
  • Long-term build-up is another method for measuring formation pressure. Here the well is shut in for an extended period (weeks or months) and the pressure is measured as it builds back up to the current formation pressure. As with the DFIT method, measuring can be performed at the surface or downhole, but both methods require that the well be shut in with no production. The long-term build-up method traditionally yields one data point representing the pressure for the whole well. In principle, a profile could be obtained by placing a number of gauges between bridge plugs in the casing, but doing so may force the operator to abandon the well or rely on retrievable bridge plugs. The long-term build-up method will also likely damage the casing integrity because the casing has to be perforated in order to have communication between the gauge and the formation.
  • U.S. Pat. No. 5,467,823 discloses a method and apparatus of monitoring subsurface formations containing at least one fluid reservoir and traversed by at least one well. The method includes lowering a sensor to a depth level corresponding to the reservoir, positioning the sensor at this depth while isolating the section of the well where the sensor is located from the rest of the well and providing fluid communication between the sensor and the reservoir. Because this system requires isolating the section of the well where the sensor is located from the rest of the well, this could not serve as a long-term pressure measurement option. In addition, the chances of maintaining pressure isolation while achieving communication to surface over the wireline with multiple sensors are remote.
  • SUMMARY OF THE INVENTION
  • The present inventions include a method for monitoring pressure in a formation traversed by at least one wellbore comprising providing a tubular element having an outside surface, attaching a perforating gun oriented in such a way that when fired, the perforating gun does not damage the tubular element, connecting a sensor to the perforating gun in close proximity to the perforating gun wherein the sensor is exposed to the wellbore, inserting the tubular element into the wellbore, securing the tubular element in the wellbore, firing the perforating gun to penetrate the formation, exposing the sensor to the formation pressure, and monitoring the pressure in the formation with the sensor to obtain pressure data.
  • The present inventions also include an apparatus for monitoring pressure in a formation traversed by at least one wellbore lined with casing comprising a wireless communications module mounted on the outside of the casing, a perforating gun oriented away from the casing mounted on the outside of the casing, and a sensor mounted on the outside of the casing wherein the sensor is not protected from overpressure.
  • The present inventions also include an apparatus for monitoring pressure in a formation traversed by at least one wellbore comprising a tubular element having an outside surface, a wireless communications module mounted on the outside surface of the tubular element, a perforating gun oriented away from the tubular element mounted on the outside surface of the tubular element, and a sensor mounted on the outside surface of the tubular element wherein the sensor is not protected from overpressure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention is better understood by reading the following description of non-limitative embodiments with reference to the attached drawings, wherein like parts of each of the figures are identified by the same reference characters, and which are briefly described as follows:
  • FIG. 1 illustrates a perspective view of one embodiment of the pressure monitoring apparatus.
  • FIG. 2 illustrates a side view of one embodiment of the pressure monitoring apparatus installed in a wellbore.
  • FIG. 3 shows a top view of the wellbore illustrating the direction of the perforations.
  • FIG. 4 illustrates a side view of another embodiment of the pressure monitoring apparatus installed in a wellbore.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 shows one embodiment of an apparatus for monitoring formation properties. In this embodiment, tubular element 101 is a section of casing, liner, or other material used to maintain the integrity of the wellbore. Tubular element 101 may also be a section of tubing, cement stinger, or other device used to lower equipment into a wellbore. Perforating gun 102 and sensor 103 are mounted on the outside of tubular element 101 in close proximity to one another. Perforating gun 102 and sensor 103 may be connected either directly or via additional tubulars or hoses.
  • Any type of perforating gun may be used; however the direction of the perforations must point away from the casing (tubular element 101) so that when fired, the perforating gun does not damage the casing. In a wireless embodiment of the invention, perforation gun 102 may be fired by pressuring up the casing using conventional methods of wireless perforating. In an alternative embodiment, a wire may be attached to perforating gun 102 and used for firing. In this embodiment, a conventional casing conveyed wireless perforating gun with the inward facing shaped charges removed is shown.
  • Any type of sensor may be used including, for example, strain gauges, quartz gages, and other conventional sensing devices. The embodiments in this application discuss using a pressure sensor; however, sensors that measure other well properties could be employed.
  • Wireless communications module 104 is shown connected to tubular element 101. Wireless telemetry technology is known in the industry and may be used to transmit data gathered downhole to surface production facilities. In this case, wireless communications module 104 transmits the pressure data gathered from sensor 103 real time to the surface.
  • FIG. 2 depicts the apparatus shown in FIG. 1 installed in wellbore 201. A section of wellbore 201 is shown traversing formation 202 with tubular element 101 lowered inside. As in FIG. 1, perforating gun 102, sensor 103, and wireless communications module 104 are mounted on the outside of tubular element 101. In FIG. 2 only one section of the wellbore is shown. Because the transmission system is wireless, an operator may install numerous sensors and perforating guns in a single wellbore to obtain the desired data.
  • In operation, once tubular element 103 is lowered to its desired position in wellbore 201, cement 203 is optionally pumped through annulus 204, securing tubular element 101 in place. Then the casing is pressured up and perforating gun 102 is activated. FIG. 3 depicts the top view of the apparatus in the wellbore to indicate the direction of the perforations. Shape charges 301 are shown connected to perforating gun 102. When fired, shaped charges 301 penetrate cement 203 and formation 202 according to paths 302 thereby exposing sensor 103 to the formation pressure. During the perforating operation, tubular element 101 remains intact and sensor 103 is not damaged even though it is in direct pressure communication with the gun and not protected from the pressure shock generated by the firing of the gun (referred to as “overpressure” in the industry). Sensor 103 gathers data, which is transmitted to surface unit 205 by wireless communication module 104, thus providing pressure data without the need to drill a dedicated observation well or compromise casing integrity.
  • Another embodiment of the invention uses a hard-wired connection to transmit the pressure data gathered downhole. FIG. 4 depicts a hard-wired embodiment that is installed on the outside of a section of casing. Wellbore 401 is shown traversing formation 402. First apparatus 403 and second apparatus 404 are shown mounted on the outside of casing 405. First apparatus 403 and second apparatus 404 are connected by wire 406, which extends to the surface (not shown). First apparatus 403 and second apparatus 404 consist of perforating guns (407 and 410), sensors (408 and 411), and communications modules (409 and 412). The entire apparatus is secured in the wellbore using cement 413. In this embodiment, the data collected by sensors 408 and 411 is transmitted using wire 406 to the surface (not shown). Transmission with a wire may be less reliable than using wireless communication because the wire might be damaged during placement in the hole or when zones are perforated for production. However, hard-wired transmission systems are advantageous because they provide higher frequency data, can transmit data for longer periods, and enable deeper measurements to be ontained. Furthermore the wire may also be used to fire the perforating guns.
  • Although the system of some embodiments of the present invention was developed for tight, low permeability reservoirs, some embodiments of the invention may also be useful in high permeability reservoirs. In many areas, multiple reservoirs penetrated by a single wellbore are produced and managed separately because of legal or reservoir management requirements. Some embodiments of the present invention enable the operator to have a single well produce one horizon, while acting as a pressure observation well for one or more other reservoirs, thus obviating the need to drill dedicated pressure observers.
  • Advantages of the embodiments of the invention include one or more of the following:
    • (i) Provides accurate pressure measurement in tight low permeability formations
    • (ii) Maintains casing integrity
    • (iii) Allows for simultaneous production and monitoring
    • (iv) Avoids need to drill separate observation well
    • (v) May be used in high permeability formations in which multiple reservoirs are penetrated by single wellbore
    • (vi) Uses multiple bullets, improving the chance of establishing pressure communication with formation
  • Those of skill in the art will appreciate that many modifications and variations are possible in terms of the disclosed embodiments, configurations, materials, and methods without departing from their spirit and scope. Accordingly, the scope of the claims appended hereafter and their functional equivalents should not be limited by particular embodiments described and illustrated herein, as these are merely exemplary in nature.

Claims (19)

1. A method for monitoring pressure in a formation traversed by at least one wellbore comprising:
providing a tubular element having an outside surface;
attaching a perforating gun oriented in such a way that when fired, the perforating gun does not damage the tubular element;
connecting a sensor to the perforating gun in close proximity to the perforating gun wherein the sensor is exposed to the wellbore;
inserting the tubular element into the wellbore;
securing the tubular element in the wellbore;
firing the perforating gun to penetrate the formation;
exposing the sensor to the formation pressure; and
monitoring the pressure in the formation with the sensor to obtain pressure data.
2. The method of claim 1 further comprising attaching a wireless communications module to the outside of the tubular element.
3. The method of claim 2 wherein the tubular element is casing.
4. The method of claim 3 wherein the securing is performed by cementing the casing against the formation
5. The method of claim 4 wherein the firing is performed by pressuring up the casing to detonate a plurality of shaped charges.
6. The method of claim 5 further comprising transmitting the pressure data to a surface control unit using the wireless communications module.
7. The method of claim 6 further comprising producing oil from the formation.
8. The method of claim 1 further comprising connecting the sensor to a surface control unit using a hard wire connection.
9. The method of claim 8 wherein the inserting is performed by a cement stinger.
10. The method of claim 9 further comprising producing oil from the formation.
11. The method of claim 8 wherein the inserting is performed by tubing.
12. The method of claim 11 further comprising producing oil from the formation.
13. An apparatus for monitoring pressure in a formation traversed by at least one wellbore lined with casing comprising:
a wireless communications module mounted on the outside of the casing;
a perforating gun oriented away from the casing mounted on the outside of the casing; and
a sensor mounted on the outside of the casing wherein the sensor is not protected from overpressure.
14. The apparatus of claim 13 further comprising a surface control unit, which is operatively connected to the wireless communications module.
15. The apparatus of claim 14 wherein the sensor is a pressure gauge.
16. An apparatus for monitoring pressure in a formation traversed by at least one wellbore comprising:
a tubular element having an outside surface;
a wireless communications module mounted on the outside surface of the tubular element;
a perforating gun oriented away from the tubular element mounted on the outside surface of the tubular element; and
a sensor mounted on the outside surface of the tubular element wherein the sensor is not protected from overpressure.
17. The apparatus of claim 16 further comprising a deployment device selected from the group consisting of tubing, cement stingers, and wireline.
18. The apparatus of claim 17 further comprising a surface control unit which is operatively is connected to the wireless communications module.
19. The apparatus of claim 18 wherein the sensor is a pressure gauge.
US11/555,985 2005-11-04 2006-11-02 Monitoring formation properties Abandoned US20070193740A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/555,985 US20070193740A1 (en) 2005-11-04 2006-11-02 Monitoring formation properties

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US73346105P 2005-11-04 2005-11-04
US11/555,985 US20070193740A1 (en) 2005-11-04 2006-11-02 Monitoring formation properties

Publications (1)

Publication Number Publication Date
US20070193740A1 true US20070193740A1 (en) 2007-08-23

Family

ID=37831614

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/555,985 Abandoned US20070193740A1 (en) 2005-11-04 2006-11-02 Monitoring formation properties

Country Status (11)

Country Link
US (1) US20070193740A1 (en)
EP (1) EP1945905B1 (en)
CN (1) CN101300402A (en)
AT (1) ATE489535T1 (en)
AU (1) AU2006311880B2 (en)
BR (1) BRPI0618246A2 (en)
CA (1) CA2627431C (en)
DE (1) DE602006018508D1 (en)
EA (1) EA200801260A1 (en)
NO (1) NO20082490L (en)
WO (1) WO2007056121A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080053658A1 (en) * 2006-08-31 2008-03-06 Wesson David S Method and apparatus for selective down hole fluid communication
US20090218094A1 (en) * 2008-02-28 2009-09-03 Mcleod Trevor Live Bottom Hole Pressure for Perforation/Fracturing Operations
US20100230105A1 (en) * 2009-03-13 2010-09-16 Vladimir Vaynshteyn Perforating with wired drill pipe
WO2012027492A2 (en) * 2010-08-24 2012-03-01 Baker Hughes Incorporated Reservoir pressure monitoring
US20120152519A1 (en) * 2010-12-17 2012-06-21 Halliburton Energy Services, Inc. Sensing shock during well perforating
US20120152542A1 (en) * 2010-12-17 2012-06-21 Halliburton Energy Services, Inc. Well perforating with determination of well characteristics
US8397800B2 (en) 2010-12-17 2013-03-19 Halliburton Energy Services, Inc. Perforating string with longitudinal shock de-coupler
US8397814B2 (en) 2010-12-17 2013-03-19 Halliburton Energy Serivces, Inc. Perforating string with bending shock de-coupler
US8490686B2 (en) 2010-12-17 2013-07-23 Halliburton Energy Services, Inc. Coupler compliance tuning for mitigating shock produced by well perforating
GB2503575A (en) * 2010-12-17 2014-01-01 Halliburton Energy Serv Inc Predicting perforating effects on a perforating string by use of shock model
US8714252B2 (en) 2011-04-29 2014-05-06 Halliburton Energy Services, Inc. Shock load mitigation in a downhole perforation tool assembly
US8875796B2 (en) 2011-03-22 2014-11-04 Halliburton Energy Services, Inc. Well tool assemblies with quick connectors and shock mitigating capabilities
WO2015002822A1 (en) * 2013-07-02 2015-01-08 Baker Hughes Incorporated Selective plugging element and method of selectively plugging a channel therewith
US20150007976A1 (en) * 2013-07-08 2015-01-08 Sensor Developments As Method and apparatus for permanent measurement of wellbore formation pressure from an in-situ cemented location
US8978817B2 (en) 2012-12-01 2015-03-17 Halliburton Energy Services, Inc. Protection of electronic devices used with perforating guns
US8978749B2 (en) 2012-09-19 2015-03-17 Halliburton Energy Services, Inc. Perforation gun string energy propagation management with tuned mass damper
AU2010365399B2 (en) * 2010-12-17 2015-05-28 Halliburton Energy Services, Inc. Sensing shock during well perforating
US9091152B2 (en) 2011-08-31 2015-07-28 Halliburton Energy Services, Inc. Perforating gun with internal shock mitigation
US9297228B2 (en) 2012-04-03 2016-03-29 Halliburton Energy Services, Inc. Shock attenuator for gun system
US9598940B2 (en) 2012-09-19 2017-03-21 Halliburton Energy Services, Inc. Perforation gun string energy propagation management system and methods
CN112729603A (en) * 2020-12-25 2021-04-30 中海石油(中国)有限公司海南分公司 Discrete multipoint temperature measuring device and measuring method thereof
WO2021225611A1 (en) * 2020-05-07 2021-11-11 Halliburton Energy Services, Inc. Well intervention-less control of perforation formation and isolation
US11261727B2 (en) 2020-02-11 2022-03-01 Saudi Arabian Oil Company Reservoir logging and pressure measurement for multi-reservoir wells
WO2022159118A1 (en) * 2021-01-21 2022-07-28 Halliburton Energy Services, Inc. Perforating gun assembly for use within a borehole

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010365400B2 (en) * 2010-12-17 2014-01-23 Halliburton Energy Services, Inc. Modeling shock produced by well perforating
EP3122997B1 (en) * 2014-02-25 2021-03-24 Services Petroliers Schlumberger Wirelessly transmitting data representing downhole operation
WO2016111629A1 (en) 2015-01-08 2016-07-14 Sensor Developments As Method and apparatus for permanent measurement of wellbore formation pressure from an in-situ cemented location
US9970286B2 (en) 2015-01-08 2018-05-15 Sensor Developments As Method and apparatus for permanent measurement of wellbore formation pressure from an in-situ cemented location
RU2721039C2 (en) * 2016-03-18 2020-05-15 Шлюмбергер Текнолоджи Б.В. Sensors located along drilling tool
GB2550868B (en) 2016-05-26 2019-02-06 Metrol Tech Ltd Apparatuses and methods for sensing temperature along a wellbore using temperature sensor modules comprising a crystal oscillator
GB2550867B (en) 2016-05-26 2019-04-03 Metrol Tech Ltd Apparatuses and methods for sensing temperature along a wellbore using temperature sensor modules connected by a matrix
GB2550866B (en) 2016-05-26 2019-04-17 Metrol Tech Ltd Apparatuses and methods for sensing temperature along a wellbore using semiconductor elements
GB2550869B (en) 2016-05-26 2019-08-14 Metrol Tech Ltd Apparatuses and methods for sensing temperature along a wellbore using resistive elements
US11377937B2 (en) 2017-04-19 2022-07-05 Halliburton Energy Services, Inc. System, method, and device for monitoring a parameter downhole
US11739628B2 (en) * 2019-07-22 2023-08-29 Saudi Arabian Oil Company Methods of determining wellbore integrity

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467823A (en) * 1993-11-17 1995-11-21 Schlumberger Technology Corporation Methods and apparatus for long term monitoring of reservoirs
US5551344A (en) * 1992-11-10 1996-09-03 Schlumberger Technology Corporation Method and apparatus for overbalanced perforating and fracturing in a borehole
US6073694A (en) * 1997-05-24 2000-06-13 Schlumberger Technology Corporation Plug placement method
US6148916A (en) * 1998-10-30 2000-11-21 Baker Hughes Incorporated Apparatus for releasing, then firing perforating guns
US6386288B1 (en) * 1999-04-27 2002-05-14 Marathon Oil Company Casing conveyed perforating process and apparatus
US20030072218A1 (en) * 1990-09-29 2003-04-17 David B. Smith Transmission of data in boreholes
US20030150263A1 (en) * 2002-02-08 2003-08-14 Economides Michael J. System and method for stress and stability related measurements in boreholes
US20040104029A1 (en) * 2002-12-03 2004-06-03 Martin Andrew J. Intelligent perforating well system and method
US20050061506A1 (en) * 2000-03-02 2005-03-24 Schlumberger Technology Corporation Well Treatment System and Method
US6994167B2 (en) * 2000-09-09 2006-02-07 Schlumberger Technology Corporation Method and system for cement lining a wellbore
US20060243445A1 (en) * 2005-04-28 2006-11-02 Schlumberger Technology Corporation One-Trip Cut-to-Release Apparatus and Method
US7213648B2 (en) * 2004-03-30 2007-05-08 Kirby Hayes Incorporated Pressure-actuated perforation with continuous removal of debris

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480690A (en) * 1981-02-17 1984-11-06 Geo Vann, Inc. Accelerated downhole pressure testing
GB2296924B (en) * 1993-10-07 1997-04-23 Conoco Inc Method and apparatus for downhole activated wellbore completion
US6766854B2 (en) * 1997-06-02 2004-07-27 Schlumberger Technology Corporation Well-bore sensor apparatus and method
US6325146B1 (en) * 1999-03-31 2001-12-04 Halliburton Energy Services, Inc. Methods of downhole testing subterranean formations and associated apparatus therefor
US6173772B1 (en) * 1999-04-22 2001-01-16 Schlumberger Technology Corporation Controlling multiple downhole tools
US6820693B2 (en) * 2001-11-28 2004-11-23 Halliburton Energy Services, Inc. Electromagnetic telemetry actuated firing system for well perforating gun
US7152676B2 (en) * 2002-10-18 2006-12-26 Schlumberger Technology Corporation Techniques and systems associated with perforation and the installation of downhole tools
GB2406871B (en) * 2002-12-03 2006-04-12 Schlumberger Holdings Intelligent well perforating systems and methods
GB2398805B (en) * 2003-02-27 2006-08-02 Sensor Highway Ltd Use of sensors with well test equipment

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030072218A1 (en) * 1990-09-29 2003-04-17 David B. Smith Transmission of data in boreholes
US6912177B2 (en) * 1990-09-29 2005-06-28 Metrol Technology Limited Transmission of data in boreholes
US5551344A (en) * 1992-11-10 1996-09-03 Schlumberger Technology Corporation Method and apparatus for overbalanced perforating and fracturing in a borehole
US5467823A (en) * 1993-11-17 1995-11-21 Schlumberger Technology Corporation Methods and apparatus for long term monitoring of reservoirs
US6073694A (en) * 1997-05-24 2000-06-13 Schlumberger Technology Corporation Plug placement method
US6148916A (en) * 1998-10-30 2000-11-21 Baker Hughes Incorporated Apparatus for releasing, then firing perforating guns
US6386288B1 (en) * 1999-04-27 2002-05-14 Marathon Oil Company Casing conveyed perforating process and apparatus
US20050061506A1 (en) * 2000-03-02 2005-03-24 Schlumberger Technology Corporation Well Treatment System and Method
US6994167B2 (en) * 2000-09-09 2006-02-07 Schlumberger Technology Corporation Method and system for cement lining a wellbore
US20030150263A1 (en) * 2002-02-08 2003-08-14 Economides Michael J. System and method for stress and stability related measurements in boreholes
US20040104029A1 (en) * 2002-12-03 2004-06-03 Martin Andrew J. Intelligent perforating well system and method
US7213648B2 (en) * 2004-03-30 2007-05-08 Kirby Hayes Incorporated Pressure-actuated perforation with continuous removal of debris
US20060243445A1 (en) * 2005-04-28 2006-11-02 Schlumberger Technology Corporation One-Trip Cut-to-Release Apparatus and Method

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080053658A1 (en) * 2006-08-31 2008-03-06 Wesson David S Method and apparatus for selective down hole fluid communication
US8684084B2 (en) 2006-08-31 2014-04-01 Geodynamics, Inc. Method and apparatus for selective down hole fluid communication
US8540027B2 (en) * 2006-08-31 2013-09-24 Geodynamics, Inc. Method and apparatus for selective down hole fluid communication
US20090218094A1 (en) * 2008-02-28 2009-09-03 Mcleod Trevor Live Bottom Hole Pressure for Perforation/Fracturing Operations
US8607864B2 (en) * 2008-02-28 2013-12-17 Schlumberger Technology Corporation Live bottom hole pressure for perforation/fracturing operations
US20100230105A1 (en) * 2009-03-13 2010-09-16 Vladimir Vaynshteyn Perforating with wired drill pipe
US8672031B2 (en) * 2009-03-13 2014-03-18 Schlumberger Technology Corporation Perforating with wired drill pipe
GB2497207A (en) * 2010-08-24 2013-06-05 Baker Hughes Inc Reservoir pressure monitoring
WO2012027492A2 (en) * 2010-08-24 2012-03-01 Baker Hughes Incorporated Reservoir pressure monitoring
WO2012027492A3 (en) * 2010-08-24 2012-04-26 Baker Hughes Incorporated Reservoir pressure monitoring
US8899320B2 (en) * 2010-12-17 2014-12-02 Halliburton Energy Services, Inc. Well perforating with determination of well characteristics
GB2503575B (en) * 2010-12-17 2014-04-09 Halliburton Energy Serv Inc Modelling shock produced by well perforating
US8408286B2 (en) 2010-12-17 2013-04-02 Halliburton Energy Services, Inc. Perforating string with longitudinal shock de-coupler
US8397814B2 (en) 2010-12-17 2013-03-19 Halliburton Energy Serivces, Inc. Perforating string with bending shock de-coupler
GB2503575A (en) * 2010-12-17 2014-01-01 Halliburton Energy Serv Inc Predicting perforating effects on a perforating string by use of shock model
US8397800B2 (en) 2010-12-17 2013-03-19 Halliburton Energy Services, Inc. Perforating string with longitudinal shock de-coupler
US20120152542A1 (en) * 2010-12-17 2012-06-21 Halliburton Energy Services, Inc. Well perforating with determination of well characteristics
US8985200B2 (en) * 2010-12-17 2015-03-24 Halliburton Energy Services, Inc. Sensing shock during well perforating
AU2010365401B2 (en) * 2010-12-17 2015-04-09 Halliburton Energy Services, Inc. Well perforating with determination of well characteristics
US8490686B2 (en) 2010-12-17 2013-07-23 Halliburton Energy Services, Inc. Coupler compliance tuning for mitigating shock produced by well perforating
US20120152519A1 (en) * 2010-12-17 2012-06-21 Halliburton Energy Services, Inc. Sensing shock during well perforating
AU2010365399B2 (en) * 2010-12-17 2015-05-28 Halliburton Energy Services, Inc. Sensing shock during well perforating
US8875796B2 (en) 2011-03-22 2014-11-04 Halliburton Energy Services, Inc. Well tool assemblies with quick connectors and shock mitigating capabilities
US9206675B2 (en) 2011-03-22 2015-12-08 Halliburton Energy Services, Inc Well tool assemblies with quick connectors and shock mitigating capabilities
US8714251B2 (en) 2011-04-29 2014-05-06 Halliburton Energy Services, Inc. Shock load mitigation in a downhole perforation tool assembly
US8881816B2 (en) 2011-04-29 2014-11-11 Halliburton Energy Services, Inc. Shock load mitigation in a downhole perforation tool assembly
US8714252B2 (en) 2011-04-29 2014-05-06 Halliburton Energy Services, Inc. Shock load mitigation in a downhole perforation tool assembly
US9091152B2 (en) 2011-08-31 2015-07-28 Halliburton Energy Services, Inc. Perforating gun with internal shock mitigation
US9297228B2 (en) 2012-04-03 2016-03-29 Halliburton Energy Services, Inc. Shock attenuator for gun system
US9598940B2 (en) 2012-09-19 2017-03-21 Halliburton Energy Services, Inc. Perforation gun string energy propagation management system and methods
US8978749B2 (en) 2012-09-19 2015-03-17 Halliburton Energy Services, Inc. Perforation gun string energy propagation management with tuned mass damper
US9909408B2 (en) 2012-12-01 2018-03-06 Halliburton Energy Service, Inc. Protection of electronic devices used with perforating guns
US9926777B2 (en) 2012-12-01 2018-03-27 Halliburton Energy Services, Inc. Protection of electronic devices used with perforating guns
US9447678B2 (en) 2012-12-01 2016-09-20 Halliburton Energy Services, Inc. Protection of electronic devices used with perforating guns
US8978817B2 (en) 2012-12-01 2015-03-17 Halliburton Energy Services, Inc. Protection of electronic devices used with perforating guns
GB2533703A (en) * 2013-07-02 2016-06-29 Baker Hughes Inc Selective plugging element and method of selectively plugging a channel therewith
WO2015002822A1 (en) * 2013-07-02 2015-01-08 Baker Hughes Incorporated Selective plugging element and method of selectively plugging a channel therewith
US9677396B2 (en) * 2013-07-08 2017-06-13 Sensor Developments As Method and apparatus for permanent measurement of wellbore formation pressure from an in-situ cemented location
US20150007976A1 (en) * 2013-07-08 2015-01-08 Sensor Developments As Method and apparatus for permanent measurement of wellbore formation pressure from an in-situ cemented location
US11261727B2 (en) 2020-02-11 2022-03-01 Saudi Arabian Oil Company Reservoir logging and pressure measurement for multi-reservoir wells
WO2021225611A1 (en) * 2020-05-07 2021-11-11 Halliburton Energy Services, Inc. Well intervention-less control of perforation formation and isolation
US11519245B2 (en) 2020-05-07 2022-12-06 Halliburton Energy Services, Inc. Well intervention-less control of perforation formation and isolation
CN112729603A (en) * 2020-12-25 2021-04-30 中海石油(中国)有限公司海南分公司 Discrete multipoint temperature measuring device and measuring method thereof
WO2022159118A1 (en) * 2021-01-21 2022-07-28 Halliburton Energy Services, Inc. Perforating gun assembly for use within a borehole
US11506048B2 (en) 2021-01-21 2022-11-22 Halliburton Energy Services, Inc. Perforating gun assembly for use within a borehole

Also Published As

Publication number Publication date
CA2627431A1 (en) 2007-05-18
BRPI0618246A2 (en) 2011-08-23
CA2627431C (en) 2015-12-29
AU2006311880B2 (en) 2010-06-03
WO2007056121A1 (en) 2007-05-18
CN101300402A (en) 2008-11-05
AU2006311880A1 (en) 2007-05-18
EP1945905B1 (en) 2010-11-24
DE602006018508D1 (en) 2011-01-05
NO20082490L (en) 2008-08-04
EA200801260A1 (en) 2009-02-27
EP1945905A1 (en) 2008-07-23
ATE489535T1 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
CA2627431C (en) Monitoring formation properties
US11680454B2 (en) Method of plugging and pressure testing a well
US9725987B2 (en) System and method for performing wellbore stimulation operations
US7173542B2 (en) Data relay for casing mounted sensors, actuators and generators
US6896074B2 (en) System and method for installation and use of devices in microboreholes
US20190390543A1 (en) Depth positioning using gamma-ray correlation and downhole parameter differential
CA3003709C (en) Bridge plug sensor for bottom-hole measurements
CN106062312A (en) Method and apparatus for reservoir testing and monitoring
US20080230221A1 (en) Methods and systems for monitoring near-wellbore and far-field reservoir properties using formation-embedded pressure sensors
Quint et al. From liability to cost effective data gathering opportunity
Denney 4D-Pressure Pilot Determines Well Spacing in Tight Gas

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHELL OIL COMPANY, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUINT, EDWINUS NICOLAAS MARIA;REEL/FRAME:019667/0465

Effective date: 20070207

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION