US20060216222A1 - Process for nano-scaled graphene plates - Google Patents

Process for nano-scaled graphene plates Download PDF

Info

Publication number
US20060216222A1
US20060216222A1 US11/442,903 US44290306A US2006216222A1 US 20060216222 A1 US20060216222 A1 US 20060216222A1 US 44290306 A US44290306 A US 44290306A US 2006216222 A1 US2006216222 A1 US 2006216222A1
Authority
US
United States
Prior art keywords
nano
plate material
graphite
scaled graphene
graphene plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/442,903
Inventor
Bor Jang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/442,903 priority Critical patent/US20060216222A1/en
Publication of US20060216222A1 publication Critical patent/US20060216222A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/755Nanosheet or quantum barrier/well, i.e. layer structure having one dimension or thickness of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/783Organic host/matrix, e.g. lipid

Definitions

  • the present invention relates to a nano-scaled thin-plate carbon material, hereinafter referred to as nano-scaled graphene plate (NGP), and a process for producing the NGP material.
  • NGP nano-scaled graphene plate
  • Carbon is known to have four unique crystalline structures, including diamond, graphite, fullerene and carbon nano-tubes.
  • the carbon nano-tube refers to a tubular structure grown with a single wall or multi-wall, which can be conceptually obtained by rolling up a graphite sheet (a sheet of graphene plane or basal plane) or several graphite sheets to form a concentric hollow structure.
  • a graphene plane is characterized by having a network of carbon atoms occupying a two-dimensional hexagonal lattice.
  • Carbon nano-tubes have a diameter on the order of a few nanometers to a few hundred nanometers.
  • Carbon nano-tubes can function as either a conductor or a semiconductor, depending on the rolled shape and the diameter of the helical tubes. Its longitudinal, hollow structure imparts unique mechanical, electrical, thermal and chemical properties to the material. Carbon nano-tubes are believed to have great potential for use in field emission devices, hydrogen fuel storage, rechargeable battery electrodes, coating ingredients, solid lubricant, fillers for a resin, and composite reinforcements.
  • Iijima was the first to report the production of carbon nanotubes by an arc discharge between two graphite rods. This technique still remains to be the most commonly used technique for producing carbon nanotubes; however, yield of pure carbon nanotubes with respect to the end product is only about 15%. Thus, a complicated, slow and expensive purification process must be carried out for particular device applications.
  • Li, et al. reported a method of producing carbon nanotubes through a thermal decomposition of hydrocarbon series gases by chemical vapor deposition (CVD) (“Large-Scale Synthesis of Aligned Carbon Nanotubes,” Science, Vol. 274, Dec. 6, 1996, pp. 1701-1703).
  • CVD chemical vapor deposition
  • This technique is applicable only with a gas that is unstable, such as acetylene or benzene.
  • a methane (CH 4 ) gas cannot be used to produce carbon nanotubes by this technique.
  • a carbon nanotube layer may be grown on a substrate using a plasma chemical vapor deposition method at a high density of 1011 cm ⁇ 3 or more.
  • the substrate may be an amorphous silicon or polysilicon substrate on which a catalytic metal layer is formed.
  • a hydrocarbon series gas may be used as a plasma source gas, the temperature of the substrate may be in the range of 600 to 900° C., and the pressure may be in the range of 10 to 1000 mTorr.
  • carbon nano-tubes are extremely expensive due to the low yield and low production and purification rates commonly associated with all of the current carbon nano-tube preparation processes.
  • the high material costs have significantly hindered the widespread application of nano-tubes.
  • a large number of researchers are making attempts to develop much lower-cost processes for nano-tubes.
  • nano-scaled graphite planes (individual sheets of graphene plane) and clusters of multiple nano-scaled graphene sheets, collectively called “nano-sized graphene plates (NGPs),” could provide unique opportunities for solid state scientists to study the structures and properties of nano carbon materials.
  • the structures of these materials may be best visualized by making a longitudinal scission on the single-wall or multi-wall of a nano-tube along its tube axis direction and then flattening up the resulting sheet or plate ( FIG. 1 ).
  • Studies on the structure-property relationship in isolated NGPs could provide insight into the properties of a fullerene structure or carbon nano-tube.
  • these nano materials could potentially become cost-effective substitutes for carbon nano-tubes or other types of nano-rods for various scientific and engineering applications.
  • the present invention provides a process for producing large quantities of NGPs. The process is estimated to be highly cost-effective.
  • NGPs can be readily produced by the following procedures: (1) partially or fully carbonizing a variety of precursor polymers, such as polyacrylonitrile (PAN) fibers and phenol-formaldehyde resin, or heat-treating petroleum or coal tar pitch, (2) exfoliating the resulting carbon- or graphite-like structure, and (3) mechanical attrition (e.g., ball milling) of the exfoliated structure to become nano-scaled.
  • precursor polymers such as polyacrylonitrile (PAN) fibers and phenol-formaldehyde resin, or heat-treating petroleum or coal tar pitch
  • PAN polyacrylonitrile
  • phenol-formaldehyde resin phenol-formaldehyde resin
  • heat-treating petroleum or coal tar pitch heat-treating petroleum or coal tar pitch
  • the heat treatment temperature and time and the mechanical attrition conditions can be varied to generate, by design, various NGP materials with a wide range of graphene plate thickness, width and length values.
  • the heat treatment temperature
  • NGP materials for more complete carbonization and graphitization.
  • the processing ease and the wide property ranges that can be achieved with NGP materials make them promising candidates for many important engineering applications.
  • the electronic, thermal and mechanical properties of NGP materials are expected to be comparable to those of carbon nano-tubes; but NGPs will be available at much lower costs and in larger quantities.
  • FIG. 1 conceptually illustrates the configuration difference between a carbon nano-tube and a nano-scaled graphene plate.
  • One preferred embodiment of the present invention is a nano-scaled graphene plate (NGP) material that is essentially composed of a sheet of graphite plane or a plurality of sheets of graphite plane.
  • NTP nano-scaled graphene plate
  • Each graphite plane also referred to as a graphene plane or basal plane, comprises a two-dimensional hexagonal structure of carbon atoms.
  • Each plate has a length and a width parallel to the graphite plane and a thickness orthogonal to the graphite plane characterized in that at least one of the values of length, width, and thickness is 100 nanometers (nm) or smaller.
  • all length, width and thickness values are smaller than 100 nm.
  • This NGP material can be produced by a process comprising the steps of: (a) carbonization or graphitization to produce a polymeric carbon, (b) exfoliation or expansion of graphite crystallites in the polymeric carbon to delaminate or separate graphene planes, and (c) mechanical attrition of the exfoliated structure to nanometer-scaled plates.
  • the first step involves partially carbonizing, fully carbonizing, or graphitizing a precursor material such as a polymer, or a petroleum or coal tar pitch material to produce a polymeric carbon.
  • a precursor material such as a polymer, or a petroleum or coal tar pitch material
  • the resulting polymeric carbon presumably contains micron- and/or nanometer-scaled graphite crystallites with each crystallite being composed of one sheet or several of sheets of graphite plane.
  • the polymeric carbon is pulverized, chopped, or milled to become small particles or short fiber segments, with a dimension preferably smaller than 1 mm and, further preferably smaller than 0.05 mm before the second step is carried out.
  • the second step involves exfoliating the graphite crystallites in the polymeric carbon.
  • Exfoliation typically involves a chemical treatment, intercalation, foaming, heating and/or cooling steps.
  • the purpose of the exfoliation treatment is to delaminate (at least crack open between) the graphene planes or to partially or fully separate graphene planes in a graphite crystallite.
  • the third step includes subjecting the polymeric carbon containing exfoliated graphite crystallites to a mechanical attrition treatment to produce a nano-scaled graphene plate material.
  • Either the individual graphene planes (one-layer NGPs) or stacks of graphene planes bonded together (multi-layer NGPs) are reduced to nanometer-sized (preferably both length and width being smaller than 100 nm in size, further preferably smaller than 10 nm in size).
  • the thickness direction or c-axis direction normal to the graphene plane
  • Polymeric carbons can assume an essentially amorphous structure, a highly organized crystal (graphite), or a wide range of intermediate structures that are characterized in that various proportions and sizes of graphite crystallites and defects are dispersed in an amorphous matrix.
  • graphite highly organized crystal
  • intermediate structures that are characterized in that various proportions and sizes of graphite crystallites and defects are dispersed in an amorphous matrix.
  • Polyacene (C 4 H 2 ) n and two-dimensional condensed aromatic rings or hexagons can be found inside the microstructure of a heat treated polymer such as a PAN fiber.
  • An appreciable amount of polyacene derivatives and smaller-sized graphene sheets are believed to exist in PAN-based polymeric carbons treated at 300-1,000° C. These species condense into wider aromatic ring structures (larger-sized graphene sheets) and thicker plates (more graphene sheets stacked together) with a higher HTT or longer heat treatment time. These graphene plates are gradually transformed into a well-developed “turbostratic structure” characteristic of the microstructure of a carbon fiber.
  • NGP materials from several classes of precursor materials were prepared.
  • the first class includes semi-crystalline PAN in a fiber form. As compared to phenolic resin, the pyrolized PAN fiber has a higher tendency to develop small crystallites that are dispersed in a disordered matrix.
  • the second class represented by phenol formaldehyde, is a more isotropic, essentially amorphous and highly cross-linked polymer.
  • the third class includes petroleum and coal tar pitch materials in bulk or fiber forms.
  • the precursor material composition, heat treatment temperature (HTT), and heat treatment time (Htt) are three parameters that govern the length, width, thickness (number of graphene sheets), and chemical composition of the resulting NGP materials.
  • PAN fibers were subjected to oxidation at 200-350° C. while under a tension, and then partial or complete carbonization at 350-1,500° C. to obtain polymeric carbons with various nano-crystalline graphite structures (graphite crystallites). Selected samples of these polymeric carbons were further heat-treated at a temperature in the range of 1,500-3,000° C. to partially or fully graphitize the materials. Phenol formaldehyde resin and petroleum and coal tar pitch materials were subjected to a similar heat treatments in a temperature range of 500 to 2,500° C.
  • Exfoliation Treatment In general, for the purpose of exfoliating graphene plane layers, the chemical treatment of pyrolyzed polymer or pitch materials involved subjecting particles of a wide range of sizes (or fibers shorter than mm in length) to a chemical solution for periods of time ranging from about one minute to about 48 hours.
  • the chemical solution was selected from a variety of oxidizing or intercalating solutions maintained at temperatures ranging from about room temperature to about 125° C.
  • the polymeric carbon particles utilized can range in size from a fine powder small enough to pass through a 325 mesh screen to a size such that no dimension is greater than about one inch or 25.4 mm.
  • concentrations of the various compounds or materials employed e.g.
  • H 2 SO 4 , HNO 3 , KMnO 4 , FeCL 3 , etc. ranged from about 0.1 normal to concentrated strengths. Ratios of H 2 SO 4 to HNO 3 were also varied from about 9:1 to about 1:1 to prepare a range of acid mixtures.
  • the chemical treatment may include interlayer chemical attack and/or intercalation, followed by a heating cycle. Exfoliation may also be achieved by using a foaming or blowing agent.
  • Interlayer chemical attack of polymeric carbon particles or short fibers is preferably achieved by subjecting the particles/fibers to oxidizing conditions.
  • oxidizing agents and oxidizing mixtures may be employed to achieve a controlled interlayer chemical attack.
  • nitric acid, potassium chlorate, chromic acid, potassium permanganate, potassium chromate, potassium dichromate, perchloric acid and the like or mixtures such as, for instance, concentrated nitric acid and potassium chlorate, chromic acid and phosphoric acid, sulfuric acid and nitric acid, etc, or mixtures of a strong organic acid, e.g. trifluoroacetic acid and a strong oxidizing agent soluble in the organic acid used.
  • Oxidizing agent solutions having concentrations ranging from 0.1 normal to concentrated strengths may be effectively employed to bring about interlayer attack.
  • the acids or the like utilized with the oxidizing agents to form suitable oxidizing media or mixtures can also be employed in concentrations ranging from about 0.1 normal to concentrated strengths.
  • the treatment of polymeric carbon particles or fibers with oxidizing agents or oxidizing mixtures such as mentioned above is preferably carried out at a temperature between about room temperature and about 125° C. and for periods of time sufficient to produce a high degree of interlayer attack.
  • the treatment time will depend upon such factors as the temperature of the oxidizing medium, grade or type of polymeric carbon treated, particle/fiber size, amount of expansion desired and strength of the oxidizing medium.
  • the opening up or splitting apart of graphene layers can also be achieved by chemically treating polymeric carbon particles/fibers with an intercalating solution or medium, hereafter referred to as intercalant, so as to insert or intercalate a suitable additive between the carbon hexagon networks and thus form an addition or intercalation compound of carbon.
  • the additive can be a halogen such as bromine or a metal halide such as ferric chloride, aluminum chloride, or the like.
  • a halogen, particularly bromine may be intercalated by contacting the polymeric carbon particles with bromine vapors or with a solution of bromine in sulfuric acid or with bromine dissolved in a suitable organic solvent.
  • Metal halides can be intercalated by contacting the polymeric carbon particles with a suitable metal halide solution.
  • ferric chloride can be intercalated by contacting polymeric carbon particles/fibers with a suitable aqueous solution of ferric chloride or with a mixture comprising ferric chloride and sulfuric acid.
  • Temperature, times, and concentrations of reactants similar to those mentioned earlier for oxidation treatments can also be employed for the above intercalation processes.
  • the thoroughly wetted or soggy polymeric carbon particles can be subjected to conditions for bringing about the expansion thereof.
  • the treated polymeric carbon particles are rinsed with an aqueous solution.
  • the rinsing or washing of the treated particles/fibers with aqueous solution may serve several functions.
  • the rinsing or leaching removes harmful materials, e.g. acid, from the particles so that it can be safely handled.
  • it may decompose or remove intercalated material.
  • it can also serve as the source of the blowing or expanding agent, which is to be incorporated between layers.
  • it can serve as the source of water if water is to be utilized as the foaming, blowing or expanding agent.
  • the c-axis direction expansion is brought about by activating a material such as, for example, a suitable foaming or blowing agent which has been incorporated between layers of parallel graphene planes, the incorporation taking place either during the interlayer attack treatment or thereafter.
  • a material such as, for example, a suitable foaming or blowing agent which has been incorporated between layers of parallel graphene planes, the incorporation taking place either during the interlayer attack treatment or thereafter.
  • the incorporated foaming or blowing agent upon activation such as by chemical interaction or by heat generates a fluid pressure, which is effective to cause c-axis direction expansion of the polymeric carbon particles.
  • a foaming or blowing agent is utilized which when activated forms an expanding gas or vapor which exerts sufficient pressure to cause expansion.
  • foaming and blowing agents can be employed.
  • expanding agents such as water, volatile liquids, e.g., liquid nitrogen and the like which change their physical state during the expansion operation.
  • the expansion of the treated polymeric carbon particles is preferably achieved by subjecting the treated particles to a temperature sufficient to produce a gas pressure which is effective to bring about an almost instantaneous and maximum expansion of the particles.
  • the expanding agent is water
  • the particles having water incorporated in the structure are preferably rapidly heated or subjected to a temperature above 100° C. so as to induce a substantially instantaneous and full expansion of the particles.
  • the substantially complete and full expansion of the particles is accomplished within a time of from about a fraction of a second to about 10 seconds.
  • the expanding gas can be generated in situ, that is, between layers of carbon networks by the interaction of suitable chemical compounds or by the use of a suitable heat sensitive additive or chemical blowing agent.
  • the polymeric carbon particles are so treated with a suitable oxidizing medium and unrestrictedly expanded that there is preferably produced expanded carbon masses having expansion ratios of at least 20 to 1 or higher.
  • the expanded polymeric carbon particles have a thickness or c-axis direction dimension in the graphite crystallite at least 20 times of that of the un-expanded crystallite.
  • the expanded carbon particles are unitary, laminar structure having a vermiform appearance.
  • the vermiform masses are lightweight, anisotropic graphite-based materials.
  • Graphite is a crystalline form of carbon comprising hexagonally arranged atoms bonded in flat layered planes, commonly referred to as basal planes or graphene planes, with van der Waal's bonds between the planes.
  • an intercalant e.g., a solution of sulfuric and nitric acid
  • the treated particles of graphite are hereafter referred to as intercalated graphite flake.
  • the particles of intercalated graphite expand in dimension in an accordion-like fashion in the c-axis direction, i.e. in the direction perpendicular to the basal planes of the graphite.
  • the presently heat-treated polymeric carbon can be subjected to intercalation and high-temperature expansion treatment to obtain a polymeric carbon containing expanded graphene planes.
  • the polymeric carbon is typically intercalated by dispersing the polymeric carbon particles or short fibers in a solution containing an oxidizing agent, such as a mixture of nitric and sulfuric acid. After the particles or fibers are intercalated excess solution is drained from the particles or fibers.
  • the quantity of intercalation solution retained on the particles or fibers after draining is typically between 20 and 50 parts of solution by weight per 100 parts by weight of carbon (pph). In some cases, it reaches about 100 pph.
  • the intercalant of the present invention contains oxidizing intercalating agents known in the art of intercalated graphites.
  • examples include those containing oxidizing agents and oxidizing mixtures, such as solutions containing nitric acid, potassium chlorate, chromic acid, potassium permanganate, potassium chromate, potassium dichromate, perchloric acid, and the like, or mixtures, such as for example, concentrated nitric acid and chlorate, chromic acid and phosphoric acid, sulfuric acid and nitric acid, or mixtures of a strong organic acid, e.g. trifluoroacetic acid, and a strong oxidizing agent soluble in the organic acid.
  • oxidizing agents and oxidizing mixtures such as solutions containing nitric acid, potassium chlorate, chromic acid, potassium permanganate, potassium chromate, potassium dichromate, perchloric acid, and the like, or mixtures, such as for example, concentrated nitric acid and chlorate, chromic acid and phosphoric acid
  • the intercalant is a solution of sulfuric acid, or sulfuric acid and phosphoric acid, and an oxidizing agent, i.e. nitric acid, perchloric acid, chromic acid, potassium permanganate, iodic or periodic acids, or the like, and preferably also includes an expansion aid as described below.
  • the intercalant may contain metal halides such as ferric chloride, and ferric chloride mixed with sulfuric acid, or a halogen, such as bromine as a solution of bromine and sulfuric acid or bromine in an organic solvent.
  • the polymeric carbon particles or fibers treated with intercalant are contacted e.g. by blending, with a reducing organic agent selected from alcohols, sugars, aldehydes and esters which are reactive with the surface film of oxidizing intercalating solution at temperatures in the range of 25° C. and 125° C.
  • a reducing organic agent selected from alcohols, sugars, aldehydes and esters which are reactive with the surface film of oxidizing intercalating solution at temperatures in the range of 25° C. and 125° C.
  • Suitable specific organic agents include the following: hexadecanol, octadecanol, 1-octanol, 2-octanol, decylalcohol, 1,10 decanediol, decylaldehyde, 1-propanol, 1,3 propanediol, ethyleneglycol, polypropylene glycol, dextrose, fructose, lactose, sucrose, potato starch, ethylene glycol monostearate, diethylene glycol dibenzoate, propylene glycol monostearate, propylene glycol monooleate, glycerol monostearate, glycerol monooleate, dimethyl oxylate, diethyl oxylate, methyl formate, ethyl formate and ascorbic acid.
  • the edge of a graphene plane may contain some non-carbon atoms such as hydrogen, oxygen, nitrogen, sulphur,
  • Attrition The exfoliated particles or short fiber segments were then submitted to a mechanical attrition treatment to further separate graphene planes and reduce the sizes of particles or fibers to be nanometer-scaled. Attrition can be achieved by pulverization, grinding, milling, etc., but the most effective method of attrition is ball-milling. High-energy planetary ball mills were found to be particularly effective in producing nano-scaled graphene plates. Since, ball milling is considered to be a mass production process, the presently invented process is capable of producing large quantities of NGP materials cost-effectively. This is in sharp contrast to the production and purification processes of carbon nano-tubes, which are slow and expensive.
  • the nano-scaled graphene plate (NGP) material produced by the presently invented process can be readily incorporated in a matrix material to obtain an NGP-reinforced composite.
  • the matrix material can be selected from a polymer (both thermoset and thermoplastic), organic, ceramic, glass, carbon, metal, or a combination thereof.
  • the NGP-reinforced composites exhibit desirable mechanical and physical properties. In some cases (e.g., polymer matrix), either the strength or the failure strain was improved, with a concomitant increase in electrical and thermal conductivities. In other cases (e.g., ceramic matrix), the fracture toughness was improved over the corresponding un-reinforced matrix material. Typically, an NGP proportion of approximately 15 volume percent was sufficient to produce significantly improved properties. In many cases, an addition of NGPs in the amount of 1%-5% by volume was adequate.
  • the product was water washed and dried to approximately 1% by weight water.
  • the dried fibers were introduced into a furnace at 1,250° C. to effect extremely rapid and high expansions of nano-scaled graphite crystallites.
  • a phenol formaldehyde resin was heat treated in an inert atmosphere at a HTT in the range of 350-900° C. to obtain polymeric carbon, which was ground to mm-sized particles and then subjected to solution treatments to obtain exfoliated polymeric carbons. Samples containing exfoliated graphite crystallites were then ball-milled to become nanometer-sized powder.
  • a coal tar pitch sample was heat treated in an inert atmosphere at a HTT in the range of 350-900° C. to obtain polymeric carbon, which was further heat-treated at 2,500° C. and ground to mm-sized particles and then subjected to solution treatments to obtain exfoliated polymeric carbons.
  • 25 grams of the polymeric carbon particles were intercalated with twenty-five grams of intercalant consisting of 86 parts by weight of 93% sulfuric acid and 14 parts by weight of 67% nitric acid. The particles were then placed in a 90° C. oven for 20 minutes. The intercalated particles were then washed with water. After each washing the particles were filtered by vacuum through a Teflon screen.
  • a petroleum pitch sample was heat treated in an inert atmosphere at a HTT of 350° C. and extruded into a polymeric carbon fiber, which was further heat-treated at 2,500° C. and ground to mm-sized particles and then subjected to solution treatments to obtain exfoliated polymeric carbons.
  • 25 grams of the polymeric carbon particles were intercalated with twenty-five grams of intercalant consisting of 86 parts by weight of 93% sulfuric acid and 14 parts by weight of 67% nitric acid. After mixing for three minutes, 1.0 grams of decanol were blended into the particles. The particles were then placed in a 90° C. oven for 20 minutes. The intercalated particles were then washed with water.
  • the nanometer-sized powder obtained in EXAMPLE 5 was mixed with epoxy resin (Epon 828 and Z curing agent at a 4:1 ratio) to obtain a nano-scaled graphene plate (NGP) reinforced epoxy composite.
  • NGP nano-scaled graphene plate
  • the nanometer-sized powder obtained in EXAMPLE 4 was mixed with polymethylmethacrylate (PMMA) to obtain an NGP-reinforced PMMA composite.
  • PMMA polymethylmethacrylate

Abstract

A process for producing a nano-scaled graphene plate. The material comprises a sheet of graphite plane or a multiplicity of sheets of graphite plane. The graphite plane is composed of a two-dimensional hexagonal lattice of carbon atoms and the plate has a length and a width parallel to the graphite plane and a thickness orthogonal to the graphite plane with at least one of the length, width, and thickness values being 100 nanometers or smaller. The process for producing nano-scaled graphene plate material comprises the steps of: a). partially or fully carbonizing a precursor polymer or heat-treating petroleum or coal tar pitch to produce a polymeric carbon containing micron- and/or nanometer-scaled graphite crystallites with each crystallite comprising one sheet or a multiplicity of sheets of graphite plane; b). exfoliating the graphite crystallites in the polymeric carbon; and c). subjecting the polymeric carbon containing exfoliated graphite crystallites to a mechanical attrition treatment to produce the nano-scaled graphene plate material.

Description

  • This is a divisional application from a prior application Ser. No. 10/274,473 (filing date Oct. 21, 2002).
  • FIELD OF THE INVENTION
  • The present invention relates to a nano-scaled thin-plate carbon material, hereinafter referred to as nano-scaled graphene plate (NGP), and a process for producing the NGP material.
  • BACKGROUND
  • Carbon is known to have four unique crystalline structures, including diamond, graphite, fullerene and carbon nano-tubes. The carbon nano-tube refers to a tubular structure grown with a single wall or multi-wall, which can be conceptually obtained by rolling up a graphite sheet (a sheet of graphene plane or basal plane) or several graphite sheets to form a concentric hollow structure. A graphene plane is characterized by having a network of carbon atoms occupying a two-dimensional hexagonal lattice. Carbon nano-tubes have a diameter on the order of a few nanometers to a few hundred nanometers.
  • Carbon nano-tubes can function as either a conductor or a semiconductor, depending on the rolled shape and the diameter of the helical tubes. Its longitudinal, hollow structure imparts unique mechanical, electrical, thermal and chemical properties to the material. Carbon nano-tubes are believed to have great potential for use in field emission devices, hydrogen fuel storage, rechargeable battery electrodes, coating ingredients, solid lubricant, fillers for a resin, and composite reinforcements.
  • Iijima was the first to report the production of carbon nanotubes by an arc discharge between two graphite rods. This technique still remains to be the most commonly used technique for producing carbon nanotubes; however, yield of pure carbon nanotubes with respect to the end product is only about 15%. Thus, a complicated, slow and expensive purification process must be carried out for particular device applications.
  • Kusunoki described another conventional approach to produce carbon nanotubes, which was published in an article entitled “Epitaxial Carbon Nanotube Film Self-organized by Sublimation Decomposition of Silicon Carbide” (Appl. Phys. Lett. Vol. 71, pp. 2620, 1997). Carbon nanotubes were produced at high temperatures by irradiating a laser onto graphite or silicon carbide. In this case, the carbon nanotubes are produced from graphite at about 1,200° C. or more and from silicon carbide at about 1,600 to 1,700° C. However, this method also requires multiple stages of purification which increases the cost. In addition, this method has difficulties in large-device applications.
  • Li, et al. reported a method of producing carbon nanotubes through a thermal decomposition of hydrocarbon series gases by chemical vapor deposition (CVD) (“Large-Scale Synthesis of Aligned Carbon Nanotubes,” Science, Vol. 274, Dec. 6, 1996, pp. 1701-1703). This technique is applicable only with a gas that is unstable, such as acetylene or benzene. For example, a methane (CH4) gas cannot be used to produce carbon nanotubes by this technique.
  • A carbon nanotube layer may be grown on a substrate using a plasma chemical vapor deposition method at a high density of 1011 cm−3 or more. The substrate may be an amorphous silicon or polysilicon substrate on which a catalytic metal layer is formed. In the growth of the carbon nanotube layer, a hydrocarbon series gas may be used as a plasma source gas, the temperature of the substrate may be in the range of 600 to 900° C., and the pressure may be in the range of 10 to 1000 mTorr.
  • In summary, carbon nano-tubes are extremely expensive due to the low yield and low production and purification rates commonly associated with all of the current carbon nano-tube preparation processes. The high material costs have significantly hindered the widespread application of nano-tubes. A large number of researchers are making attempts to develop much lower-cost processes for nano-tubes. We have taken a different approach in that, instead of carbon nano-tubes, we chose to develop alternative nano-scaled carbon materials that exhibit comparable properties, but are more readily available and at much lower costs.
  • It is envisioned that individual nano-scaled graphite planes (individual sheets of graphene plane) and clusters of multiple nano-scaled graphene sheets, collectively called “nano-sized graphene plates (NGPs),” could provide unique opportunities for solid state scientists to study the structures and properties of nano carbon materials. The structures of these materials may be best visualized by making a longitudinal scission on the single-wall or multi-wall of a nano-tube along its tube axis direction and then flattening up the resulting sheet or plate (FIG. 1). Studies on the structure-property relationship in isolated NGPs could provide insight into the properties of a fullerene structure or carbon nano-tube. Furthermore, these nano materials could potentially become cost-effective substitutes for carbon nano-tubes or other types of nano-rods for various scientific and engineering applications.
  • Direct synthesis of the NGP material had not been possible, although the material had been conceptually conceived and theoretically predicted to be capable of exhibiting many novel and useful properties. The present invention provides a process for producing large quantities of NGPs. The process is estimated to be highly cost-effective.
  • SUMMARY OF THE INVENTION
  • As a preferred embodiment of the presently invented process, NGPs can be readily produced by the following procedures: (1) partially or fully carbonizing a variety of precursor polymers, such as polyacrylonitrile (PAN) fibers and phenol-formaldehyde resin, or heat-treating petroleum or coal tar pitch, (2) exfoliating the resulting carbon- or graphite-like structure, and (3) mechanical attrition (e.g., ball milling) of the exfoliated structure to become nano-scaled. The heat treatment temperature and time and the mechanical attrition conditions can be varied to generate, by design, various NGP materials with a wide range of graphene plate thickness, width and length values. The heat treatment temperature typically lies in the range of 300-1,000° C. for partial carbonization and 1,000-3,000° C. for more complete carbonization and graphitization. The processing ease and the wide property ranges that can be achieved with NGP materials make them promising candidates for many important engineering applications. The electronic, thermal and mechanical properties of NGP materials are expected to be comparable to those of carbon nano-tubes; but NGPs will be available at much lower costs and in larger quantities.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 conceptually illustrates the configuration difference between a carbon nano-tube and a nano-scaled graphene plate.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • One preferred embodiment of the present invention is a nano-scaled graphene plate (NGP) material that is essentially composed of a sheet of graphite plane or a plurality of sheets of graphite plane. Each graphite plane, also referred to as a graphene plane or basal plane, comprises a two-dimensional hexagonal structure of carbon atoms. Each plate has a length and a width parallel to the graphite plane and a thickness orthogonal to the graphite plane characterized in that at least one of the values of length, width, and thickness is 100 nanometers (nm) or smaller. Preferably, all length, width and thickness values are smaller than 100 nm. This NGP material can be produced by a process comprising the steps of: (a) carbonization or graphitization to produce a polymeric carbon, (b) exfoliation or expansion of graphite crystallites in the polymeric carbon to delaminate or separate graphene planes, and (c) mechanical attrition of the exfoliated structure to nanometer-scaled plates.
  • The first step involves partially carbonizing, fully carbonizing, or graphitizing a precursor material such as a polymer, or a petroleum or coal tar pitch material to produce a polymeric carbon. The resulting polymeric carbon presumably contains micron- and/or nanometer-scaled graphite crystallites with each crystallite being composed of one sheet or several of sheets of graphite plane. Preferably, the polymeric carbon is pulverized, chopped, or milled to become small particles or short fiber segments, with a dimension preferably smaller than 1 mm and, further preferably smaller than 0.05 mm before the second step is carried out.
  • The second step involves exfoliating the graphite crystallites in the polymeric carbon. Exfoliation typically involves a chemical treatment, intercalation, foaming, heating and/or cooling steps. The purpose of the exfoliation treatment is to delaminate (at least crack open between) the graphene planes or to partially or fully separate graphene planes in a graphite crystallite.
  • The third step includes subjecting the polymeric carbon containing exfoliated graphite crystallites to a mechanical attrition treatment to produce a nano-scaled graphene plate material. Either the individual graphene planes (one-layer NGPs) or stacks of graphene planes bonded together (multi-layer NGPs) are reduced to nanometer-sized (preferably both length and width being smaller than 100 nm in size, further preferably smaller than 10 nm in size). In the thickness direction (or c-axis direction normal to the graphene plane), there may be a small number of graphene planes that are still bonded together through the van der Waal's forces that commonly hold the basal planes together in a natural graphite. Preferably, there are less than 20 layers (further preferably less than 5 layers) of graphene planes, each with length and width smaller than 100 nm, that constitute a multi-layer NGP material produced after mechanical attrition. Preferred embodiments of the present invention are further described as follows:
  • Carbonization Treatment: The preparation of organic semiconducting materials by simple pyrolysis of polymers or petroleum/coal tar pitch materials has been known for approximately three decades. When polymers such as polyacrylonitrile (PAN), rayon, cellulose and phenol formaldehyde were heated above 300° C. in an inert atmosphere they gradually lost most of their non-carbon contents. The resulting structure is generally referred to as a polymeric carbon. Depending upon the heat treatment temperature (HTT) and time, polymeric carbons can be made to be insulating, semi-conducting, or conducting with the electric conductivity range covering approximately 12 orders of magnitude. This wide scope of conductivity values can be further extended by doping the polymeric carbon with electron donors or acceptors. These characteristics uniquely qualify polymeric carbons as a novel, easy-to-process class of electro-active materials whose structures and physical properties can be readily tailor-made.
  • Polymeric carbons can assume an essentially amorphous structure, a highly organized crystal (graphite), or a wide range of intermediate structures that are characterized in that various proportions and sizes of graphite crystallites and defects are dispersed in an amorphous matrix. Thus far, all of the earlier experimental studies on polymeric carbons have been based on bulk samples that contain a blend of graphite crystalline structures (crystallites) of various sizes, amorphous phases, and high defect populations and, hence, the properties measured represent the global properties of all the constituent phases together. No experimental work has been reported on the properties of individual, isolated carbon crystallites or graphene plates that are nanometer-sized presumably due to the lack of a method to directly synthesize such nano materials.
  • Polyacene (C4H2)n and two-dimensional condensed aromatic rings or hexagons (nano-scaled graphene sheets) can be found inside the microstructure of a heat treated polymer such as a PAN fiber. An appreciable amount of polyacene derivatives and smaller-sized graphene sheets are believed to exist in PAN-based polymeric carbons treated at 300-1,000° C. These species condense into wider aromatic ring structures (larger-sized graphene sheets) and thicker plates (more graphene sheets stacked together) with a higher HTT or longer heat treatment time. These graphene plates are gradually transformed into a well-developed “turbostratic structure” characteristic of the microstructure of a carbon fiber.
  • NGP materials from several classes of precursor materials were prepared. For instance, the first class includes semi-crystalline PAN in a fiber form. As compared to phenolic resin, the pyrolized PAN fiber has a higher tendency to develop small crystallites that are dispersed in a disordered matrix. The second class, represented by phenol formaldehyde, is a more isotropic, essentially amorphous and highly cross-linked polymer. The third class includes petroleum and coal tar pitch materials in bulk or fiber forms. The precursor material composition, heat treatment temperature (HTT), and heat treatment time (Htt) are three parameters that govern the length, width, thickness (number of graphene sheets), and chemical composition of the resulting NGP materials.
  • PAN fibers were subjected to oxidation at 200-350° C. while under a tension, and then partial or complete carbonization at 350-1,500° C. to obtain polymeric carbons with various nano-crystalline graphite structures (graphite crystallites). Selected samples of these polymeric carbons were further heat-treated at a temperature in the range of 1,500-3,000° C. to partially or fully graphitize the materials. Phenol formaldehyde resin and petroleum and coal tar pitch materials were subjected to a similar heat treatments in a temperature range of 500 to 2,500° C.
  • Exfoliation Treatment: In general, for the purpose of exfoliating graphene plane layers, the chemical treatment of pyrolyzed polymer or pitch materials involved subjecting particles of a wide range of sizes (or fibers shorter than mm in length) to a chemical solution for periods of time ranging from about one minute to about 48 hours. The chemical solution was selected from a variety of oxidizing or intercalating solutions maintained at temperatures ranging from about room temperature to about 125° C. The polymeric carbon particles utilized can range in size from a fine powder small enough to pass through a 325 mesh screen to a size such that no dimension is greater than about one inch or 25.4 mm. The concentrations of the various compounds or materials employed, e.g. H2SO4, HNO3, KMnO4, FeCL3, etc. ranged from about 0.1 normal to concentrated strengths. Ratios of H2SO4 to HNO3 were also varied from about 9:1 to about 1:1 to prepare a range of acid mixtures. The chemical treatment may include interlayer chemical attack and/or intercalation, followed by a heating cycle. Exfoliation may also be achieved by using a foaming or blowing agent.
  • Interlayer chemical attack of polymeric carbon particles or short fibers is preferably achieved by subjecting the particles/fibers to oxidizing conditions. Various oxidizing agents and oxidizing mixtures may be employed to achieve a controlled interlayer chemical attack. For example, there may be utilized nitric acid, potassium chlorate, chromic acid, potassium permanganate, potassium chromate, potassium dichromate, perchloric acid and the like, or mixtures such as, for instance, concentrated nitric acid and potassium chlorate, chromic acid and phosphoric acid, sulfuric acid and nitric acid, etc, or mixtures of a strong organic acid, e.g. trifluoroacetic acid and a strong oxidizing agent soluble in the organic acid used. A wide range of oxidizing agent concentrations can be utilized. Oxidizing agent solutions having concentrations ranging from 0.1 normal to concentrated strengths may be effectively employed to bring about interlayer attack. The acids or the like utilized with the oxidizing agents to form suitable oxidizing media or mixtures can also be employed in concentrations ranging from about 0.1 normal to concentrated strengths.
  • The treatment of polymeric carbon particles or fibers with oxidizing agents or oxidizing mixtures such as mentioned above is preferably carried out at a temperature between about room temperature and about 125° C. and for periods of time sufficient to produce a high degree of interlayer attack. The treatment time will depend upon such factors as the temperature of the oxidizing medium, grade or type of polymeric carbon treated, particle/fiber size, amount of expansion desired and strength of the oxidizing medium.
  • The opening up or splitting apart of graphene layers can also be achieved by chemically treating polymeric carbon particles/fibers with an intercalating solution or medium, hereafter referred to as intercalant, so as to insert or intercalate a suitable additive between the carbon hexagon networks and thus form an addition or intercalation compound of carbon. For example, the additive can be a halogen such as bromine or a metal halide such as ferric chloride, aluminum chloride, or the like. A halogen, particularly bromine, may be intercalated by contacting the polymeric carbon particles with bromine vapors or with a solution of bromine in sulfuric acid or with bromine dissolved in a suitable organic solvent. Metal halides can be intercalated by contacting the polymeric carbon particles with a suitable metal halide solution. For example, ferric chloride can be intercalated by contacting polymeric carbon particles/fibers with a suitable aqueous solution of ferric chloride or with a mixture comprising ferric chloride and sulfuric acid. Temperature, times, and concentrations of reactants similar to those mentioned earlier for oxidation treatments can also be employed for the above intercalation processes.
  • Upon completion of the treatment directed to promoting interlayer attack, the thoroughly wetted or soggy polymeric carbon particles can be subjected to conditions for bringing about the expansion thereof. Preferably, however, the treated polymeric carbon particles are rinsed with an aqueous solution. The rinsing or washing of the treated particles/fibers with aqueous solution may serve several functions. For instance, the rinsing or leaching removes harmful materials, e.g. acid, from the particles so that it can be safely handled. Moreover, it may decompose or remove intercalated material. Furthermore, it can also serve as the source of the blowing or expanding agent, which is to be incorporated between layers. For example, it can serve as the source of water if water is to be utilized as the foaming, blowing or expanding agent.
  • The c-axis direction expansion is brought about by activating a material such as, for example, a suitable foaming or blowing agent which has been incorporated between layers of parallel graphene planes, the incorporation taking place either during the interlayer attack treatment or thereafter. The incorporated foaming or blowing agent upon activation such as by chemical interaction or by heat generates a fluid pressure, which is effective to cause c-axis direction expansion of the polymeric carbon particles. Preferably, a foaming or blowing agent is utilized which when activated forms an expanding gas or vapor which exerts sufficient pressure to cause expansion.
  • A wide variety of well-known foaming and blowing agents can be employed. For example, there can be utilized expanding agents such as water, volatile liquids, e.g., liquid nitrogen and the like which change their physical state during the expansion operation. When an expanding agent of the above type is employed, the expansion of the treated polymeric carbon particles is preferably achieved by subjecting the treated particles to a temperature sufficient to produce a gas pressure which is effective to bring about an almost instantaneous and maximum expansion of the particles. For instance, when the expanding agent is water, the particles having water incorporated in the structure are preferably rapidly heated or subjected to a temperature above 100° C. so as to induce a substantially instantaneous and full expansion of the particles. If such particles to be expanded are slowly heated to a temperature above 100° C., substantial water will be lost by vaporization from the structure resulting in a drying of the structure so that little expansion will be achieved. Preferably, the substantially complete and full expansion of the particles is accomplished within a time of from about a fraction of a second to about 10 seconds.
  • In addition to physical expanding methods such as described above, the expanding gas can be generated in situ, that is, between layers of carbon networks by the interaction of suitable chemical compounds or by the use of a suitable heat sensitive additive or chemical blowing agent.
  • As indicated previously, the polymeric carbon particles are so treated with a suitable oxidizing medium and unrestrictedly expanded that there is preferably produced expanded carbon masses having expansion ratios of at least 20 to 1 or higher. In other words, the expanded polymeric carbon particles have a thickness or c-axis direction dimension in the graphite crystallite at least 20 times of that of the un-expanded crystallite. The expanded carbon particles are unitary, laminar structure having a vermiform appearance. The vermiform masses are lightweight, anisotropic graphite-based materials.
  • The intercalation treatment is further described in what follows: Graphite is a crystalline form of carbon comprising hexagonally arranged atoms bonded in flat layered planes, commonly referred to as basal planes or graphene planes, with van der Waal's bonds between the planes. By treating particles of graphite, such as natural graphite flake, with an intercalant of e.g., a solution of sulfuric and nitric acid, the crystal structure of the graphite reacts to form a compound of graphite and the intercalant. The treated particles of graphite are hereafter referred to as intercalated graphite flake. Upon exposure to elevated temperatures the particles of intercalated graphite expand in dimension in an accordion-like fashion in the c-axis direction, i.e. in the direction perpendicular to the basal planes of the graphite. In a similar fashion, the presently heat-treated polymeric carbon, with or without pulverization, can be subjected to intercalation and high-temperature expansion treatment to obtain a polymeric carbon containing expanded graphene planes. The polymeric carbon is typically intercalated by dispersing the polymeric carbon particles or short fibers in a solution containing an oxidizing agent, such as a mixture of nitric and sulfuric acid. After the particles or fibers are intercalated excess solution is drained from the particles or fibers. The quantity of intercalation solution retained on the particles or fibers after draining is typically between 20 and 50 parts of solution by weight per 100 parts by weight of carbon (pph). In some cases, it reaches about 100 pph.
  • The intercalant of the present invention contains oxidizing intercalating agents known in the art of intercalated graphites. As indicated earlier, examples include those containing oxidizing agents and oxidizing mixtures, such as solutions containing nitric acid, potassium chlorate, chromic acid, potassium permanganate, potassium chromate, potassium dichromate, perchloric acid, and the like, or mixtures, such as for example, concentrated nitric acid and chlorate, chromic acid and phosphoric acid, sulfuric acid and nitric acid, or mixtures of a strong organic acid, e.g. trifluoroacetic acid, and a strong oxidizing agent soluble in the organic acid.
  • In a preferred embodiment of the invention, the intercalant is a solution of sulfuric acid, or sulfuric acid and phosphoric acid, and an oxidizing agent, i.e. nitric acid, perchloric acid, chromic acid, potassium permanganate, iodic or periodic acids, or the like, and preferably also includes an expansion aid as described below. The intercalant may contain metal halides such as ferric chloride, and ferric chloride mixed with sulfuric acid, or a halogen, such as bromine as a solution of bromine and sulfuric acid or bromine in an organic solvent.
  • The polymeric carbon particles or fibers treated with intercalant are contacted e.g. by blending, with a reducing organic agent selected from alcohols, sugars, aldehydes and esters which are reactive with the surface film of oxidizing intercalating solution at temperatures in the range of 25° C. and 125° C. Suitable specific organic agents include the following: hexadecanol, octadecanol, 1-octanol, 2-octanol, decylalcohol, 1,10 decanediol, decylaldehyde, 1-propanol, 1,3 propanediol, ethyleneglycol, polypropylene glycol, dextrose, fructose, lactose, sucrose, potato starch, ethylene glycol monostearate, diethylene glycol dibenzoate, propylene glycol monostearate, propylene glycol monooleate, glycerol monostearate, glycerol monooleate, dimethyl oxylate, diethyl oxylate, methyl formate, ethyl formate and ascorbic acid. Depending upon the chemicals used in the exfoliation treatment, the edge of a graphene plane may contain some non-carbon atoms such as hydrogen, oxygen, nitrogen, sulphur, and combinations thereof.
  • Mechanical Attrition: The exfoliated particles or short fiber segments were then submitted to a mechanical attrition treatment to further separate graphene planes and reduce the sizes of particles or fibers to be nanometer-scaled. Attrition can be achieved by pulverization, grinding, milling, etc., but the most effective method of attrition is ball-milling. High-energy planetary ball mills were found to be particularly effective in producing nano-scaled graphene plates. Since, ball milling is considered to be a mass production process, the presently invented process is capable of producing large quantities of NGP materials cost-effectively. This is in sharp contrast to the production and purification processes of carbon nano-tubes, which are slow and expensive.
  • The nano-scaled graphene plate (NGP) material produced by the presently invented process can be readily incorporated in a matrix material to obtain an NGP-reinforced composite. The matrix material can be selected from a polymer (both thermoset and thermoplastic), organic, ceramic, glass, carbon, metal, or a combination thereof. The NGP-reinforced composites exhibit desirable mechanical and physical properties. In some cases (e.g., polymer matrix), either the strength or the failure strain was improved, with a concomitant increase in electrical and thermal conductivities. In other cases (e.g., ceramic matrix), the fracture toughness was improved over the corresponding un-reinforced matrix material. Typically, an NGP proportion of approximately 15 volume percent was sufficient to produce significantly improved properties. In many cases, an addition of NGPs in the amount of 1%-5% by volume was adequate.
  • EXAMPLE 1
  • One hundred grams of polymeric carbon, prepared by oxidation of PAN fibers at 250° C. and partial carbonization of the oxidized PAN at 500° C., were treated in a mixture of sulfuric and nitric acids at concentrations to yield the desired intercalation compound. The product was water washed and dried to approximately 1% by weight water. The dried fibers were introduced into a furnace at 1,250° C. to effect extremely rapid and high expansions of nano-scaled graphite crystallites. The exfoliated carbon sample, chopped into a short fiber form (<1 mm length), was then ball-milled in a high-energy plenary ball mill machine for 24 hours to produce nano-scaled particles.
  • EXAMPLE 2
  • Same as in Example 1, but the carbonization temperature was 1,000° C.
  • EXAMPLE 3
  • A phenol formaldehyde resin was heat treated in an inert atmosphere at a HTT in the range of 350-900° C. to obtain polymeric carbon, which was ground to mm-sized particles and then subjected to solution treatments to obtain exfoliated polymeric carbons. Samples containing exfoliated graphite crystallites were then ball-milled to become nanometer-sized powder.
  • EXAMPLE 4
  • A coal tar pitch sample was heat treated in an inert atmosphere at a HTT in the range of 350-900° C. to obtain polymeric carbon, which was further heat-treated at 2,500° C. and ground to mm-sized particles and then subjected to solution treatments to obtain exfoliated polymeric carbons. Specifically, 25 grams of the polymeric carbon particles were intercalated with twenty-five grams of intercalant consisting of 86 parts by weight of 93% sulfuric acid and 14 parts by weight of 67% nitric acid. The particles were then placed in a 90° C. oven for 20 minutes. The intercalated particles were then washed with water. After each washing the particles were filtered by vacuum through a Teflon screen. After the final wash the particles were dried for 1 hour in a 115° C. oven. The dried particles were then rapidly heated to approximately 1000° C. to further promote expansion. Samples containing exfoliated graphite crystallites were then ball-milled to become nanometer-sized powder.
  • EXAMPLE 5
  • A petroleum pitch sample was heat treated in an inert atmosphere at a HTT of 350° C. and extruded into a polymeric carbon fiber, which was further heat-treated at 2,500° C. and ground to mm-sized particles and then subjected to solution treatments to obtain exfoliated polymeric carbons. Specifically, 25 grams of the polymeric carbon particles were intercalated with twenty-five grams of intercalant consisting of 86 parts by weight of 93% sulfuric acid and 14 parts by weight of 67% nitric acid. After mixing for three minutes, 1.0 grams of decanol were blended into the particles. The particles were then placed in a 90° C. oven for 20 minutes. The intercalated particles were then washed with water. After each washing the particles were filtered by vacuum through a Teflon screen. After the final wash the particles were dried for 1 hour in a 115° C. oven. The dried particles were then rapidly heated to approximately 1,000° C. to further promote expansion. Samples containing exfoliated graphite crystallites were then ball-milled to become nanometer-sized powder.
  • EXAMPLE 6
  • The nanometer-sized powder obtained in EXAMPLE 5 was mixed with epoxy resin (Epon 828 and Z curing agent at a 4:1 ratio) to obtain a nano-scaled graphene plate (NGP) reinforced epoxy composite. A 35% increase in three-point-bending strength over the un-reinforced epoxy was observed with a composite containing only a 5% by volume of NGPs.
  • EXAMPLE 7
  • The nanometer-sized powder obtained in EXAMPLE 4 was mixed with polymethylmethacrylate (PMMA) to obtain an NGP-reinforced PMMA composite. An increase in tensile failure strain from approximately 5% for the un-reinforced PMMA to approximately 18% for an NGP(5%)-PMMA composite.

Claims (12)

1-5. (canceled)
6. A process for producing a nano-scaled graphene plate material comprising the steps of:
a). either partially or fully carbonizing a precursor polymer or heat-treating petroleum or coal tar pitch to produce a polymeric carbon containing micron- and/or nanometer-scaled graphite crystallites with each crystallite comprising one sheet or a multiplicity of sheets of graphite plane;
b). exfoliating said graphite crystallites in said polymeric carbon; and
c). subjecting said polymeric carbon containing exfoliated graphite crystallites to a mechanical attrition treatment to produce said nano-scaled graphene plate material.
7. The process for producing nano-scaled graphene plate material as defined in claim 6, wherein said precursor polymer, petroleum or coal tar pitch is in a fiber form.
8. The process for producing nano-scaled graphene plate material as defined in claim 6, wherein said precursor polymer is selected from the group consisting of polyacrylonitrile and its copolymers or derivatives, phenol formaldehyde and its copolymers or derivatives, rayon and its derivatives, cellulose and its derivatives, and combinations thereof.
9. The process for producing nano-scaled graphene plate material as defined in claim 6, wherein said step of carbonizing or heat-treating comprises a heat treatment at a temperature in the range of 300° C. to 2,500° C.
10. The process for producing nano-scaled graphene plate material as defined in claim 6, wherein said step of carbonizing or heat-treating comprises a heat treatment at a temperature in the range of 300° C. to 1,000° C.
11. The process for producing nano-scaled graphene plate material as defined in claim 6, wherein said step of exfoliating comprises a chemical treatment that includes an interlayer chemical attack, intercalation, foaming, heating and/or cooling.
12. The process for producing nano-scaled graphene plate material as defined in claim 6, wherein said step of exfoliating comprises contacting said polymeric carbon with an oxidizing agent selected from the group consisting of nitric acid, potassium chlorate, chromic acid, potassium permanganate, potassium chromate, potassium dichromate, perchloric acid, phosphoric acid, sulfuric acid, trifluoroacetic acid, organic acid, and mixtures thereof.
13. The process for producing nano-scaled graphene plate material as defined in claim 6, wherein said mechanical attrition treatment comprises a ball milling treatment of said polymeric carbon.
14. The process for producing nano-scaled graphene plate material as defined in claim 6, wherein said mechanical attrition treatment comprises operating a high-energy planetary ball mill.
15. The process for producing nano-scaled graphene plate material as defined in claim 6, wherein said polymeric carbon produced in step (a) is pulverized to become small particle or short fiber segment forms prior to step (b).
16-19. (canceled)
US11/442,903 2002-10-21 2006-05-31 Process for nano-scaled graphene plates Abandoned US20060216222A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/442,903 US20060216222A1 (en) 2002-10-21 2006-05-31 Process for nano-scaled graphene plates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/274,473 US7071258B1 (en) 2002-10-21 2002-10-21 Nano-scaled graphene plates
US11/442,903 US20060216222A1 (en) 2002-10-21 2006-05-31 Process for nano-scaled graphene plates

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/274,473 Division US7071258B1 (en) 2002-10-21 2002-10-21 Nano-scaled graphene plates

Publications (1)

Publication Number Publication Date
US20060216222A1 true US20060216222A1 (en) 2006-09-28

Family

ID=36613711

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/274,473 Expired - Lifetime US7071258B1 (en) 2002-10-21 2002-10-21 Nano-scaled graphene plates
US11/442,903 Abandoned US20060216222A1 (en) 2002-10-21 2006-05-31 Process for nano-scaled graphene plates

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/274,473 Expired - Lifetime US7071258B1 (en) 2002-10-21 2002-10-21 Nano-scaled graphene plates

Country Status (1)

Country Link
US (2) US7071258B1 (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092809A1 (en) * 2008-10-10 2010-04-15 Board Of Trustees Of Michigan State University Electrically conductive, optically transparent films of exfoliated graphite nanoparticles and methods of making the same
US20100102033A1 (en) * 2008-10-27 2010-04-29 Samsung Electronics Co., Ltd. Method for preparing nanotubes of piezoelectric material and nanotubes of piezoelectric material obtained thereby
US20100101710A1 (en) * 2008-10-27 2010-04-29 Samsung Electronics Co., Ltd. Method for removing a carbonization catalyst from a graphene sheet and method for transferring the graphene sheet
US20100125113A1 (en) * 2008-11-18 2010-05-20 Gm Global Technology Operations, Inc. Self-healing and scratch resistant shape memory polymer system
US20100222482A1 (en) * 2006-09-26 2010-09-02 Jang Bor Z Mass production of nano-scaled platelets and products
WO2010107763A1 (en) * 2009-03-16 2010-09-23 Aksay Ilhan A Reinforced polymeric articles
WO2010107762A1 (en) * 2009-03-16 2010-09-23 Aksay Ilhan A Polymeric fibers and articles made therefrom
US20100255984A1 (en) * 2009-04-03 2010-10-07 Brookhaven Science Associates, Llc Monolayer and/or Few-Layer Graphene On Metal or Metal-Coated Substrates
US20100323113A1 (en) * 2009-06-18 2010-12-23 Ramappa Deepak A Method to Synthesize Graphene
WO2011042800A1 (en) 2009-10-07 2011-04-14 Polimeri Europa S.P.A. Expandable thermoplastic nanocomposite polymeric compositions with an improved thermal insulation capacity
US20110095244A1 (en) * 2008-06-30 2011-04-28 Dow Global Technologies, Inc. Polymer composite with intumescent graphene
US20110165466A1 (en) * 2010-01-04 2011-07-07 Aruna Zhamu Lithium metal-sulfur and lithium ion-sulfur secondary batteries containing a nano-structured cathode and processes for producing same
US20110206915A1 (en) * 2009-02-17 2011-08-25 Mcalister Technologies, Llc Architectural construct having for example a plurality of architectural crystals
WO2011146090A2 (en) * 2009-11-24 2011-11-24 Kansas State University Research Foundation Production of graphene nanoribbons with controlled dimensions and crystallographic orientation
CN102259849A (en) * 2011-06-09 2011-11-30 无锡第六元素高科技发展有限公司 Method for preparing graphene by utilizing solid carbon source
WO2012039533A1 (en) * 2010-09-20 2012-03-29 Snu R&Db Foundation Graphene structure, method of forming the graphene structure, and transparent electrode including the graphene structure
US20120282446A1 (en) * 2011-05-03 2012-11-08 Korea Institute Of Science And Technology Carbon materials, product comprising the same, and method for preparing the same
US20130009825A1 (en) * 2006-11-15 2013-01-10 Board Of Trustees Of Michigan State University Micropatterning of conductive graphite particles using microcontact printing
WO2013025631A3 (en) * 2011-08-12 2013-04-11 Mcalister Technologies, Llc Methods for manufacturing architectural constructs
US8486363B2 (en) 2011-09-30 2013-07-16 Ppg Industries Ohio, Inc. Production of graphenic carbon particles utilizing hydrocarbon precursor materials
US20130264041A1 (en) * 2012-04-09 2013-10-10 Aruna Zhamu Thermal management system containing an integrated graphene film for electronic devices
WO2014026194A1 (en) * 2012-08-10 2014-02-13 High Temperature Physics, Llc System and process for functionalizing graphene
US20140079932A1 (en) * 2012-09-04 2014-03-20 The Trustees Of Princeton University Nano-graphene and nano-graphene oxide
US8796361B2 (en) 2010-11-19 2014-08-05 Ppg Industries Ohio, Inc. Adhesive compositions containing graphenic carbon particles
US20140328006A1 (en) * 2013-05-03 2014-11-06 The Governors Of The University Of Alberta Carbon nanosheets
CN104163417A (en) * 2013-05-20 2014-11-26 东丽先端材料研究开发(中国)有限公司 Method for preparing graphene by peeling off graphite
US20150247041A1 (en) * 2012-10-29 2015-09-03 University Of Ulster Anti-corrosion coatings
US20160002046A1 (en) * 2013-06-13 2016-01-07 Graftech International Holdings Inc. Method of producing a graphene material
US9260308B2 (en) 2011-04-19 2016-02-16 Graphene Technologies, Inc. Nanomaterials and process for making the same
CN105480971A (en) * 2016-01-29 2016-04-13 福州大学 Preparation method of asphalt-based three-dimensional mesoporous graphene material
US9404058B2 (en) * 2014-09-09 2016-08-02 Graphene Platform Corporation Method for producing a composite lubricating material
US9475946B2 (en) 2011-09-30 2016-10-25 Ppg Industries Ohio, Inc. Graphenic carbon particle co-dispersions and methods of making same
US9511663B2 (en) 2013-05-29 2016-12-06 Mcalister Technologies, Llc Methods for fuel tank recycling and net hydrogen fuel and carbon goods production along with associated apparatus and systems
CN106185882A (en) * 2016-06-07 2016-12-07 黑龙江省宝泉岭农垦帝源矿业有限公司 A kind of method that in utilization, low-carbon (LC) Fine particle processing prepares low-sulphur expanded graphite
CN106185881A (en) * 2016-06-07 2016-12-07 黑龙江省宝泉岭农垦帝源矿业有限公司 A kind of method that in utilization, low-carbon (LC) Fine particle processing prepares sulphur-free expanded graphite
US9534296B2 (en) 2013-03-15 2017-01-03 Mcalister Technologies, Llc Methods of manufacture of engineered materials and devices
US9574094B2 (en) 2013-12-09 2017-02-21 Ppg Industries Ohio, Inc. Graphenic carbon particle dispersions and methods of making same
US9752035B2 (en) 2014-09-09 2017-09-05 Graphene Platform Corporation Composite lubricating material, engine oil, grease, and lubricant, and method of producing a composite lubricating material
US9761903B2 (en) 2011-09-30 2017-09-12 Ppg Industries Ohio, Inc. Lithium ion battery electrodes including graphenic carbon particles
US9832818B2 (en) 2011-09-30 2017-11-28 Ppg Industries Ohio, Inc. Resistive heating coatings containing graphenic carbon particles
US9938416B2 (en) 2011-09-30 2018-04-10 Ppg Industries Ohio, Inc. Absorptive pigments comprising graphenic carbon particles
US9988551B2 (en) 2011-09-30 2018-06-05 Ppg Industries Ohio, Inc. Black pigments comprising graphenic carbon particles
US10167198B2 (en) 2012-02-14 2019-01-01 Sekisui Chemical Co., Ltd. Method for producing flake graphite, and flake graphite
US10190242B2 (en) * 2015-10-20 2019-01-29 Acelon Chemicals and Fiber Corporation Method of preparing of natural graphene cellulose blended spunbond nonwoven fabric
US10190243B2 (en) * 2015-10-20 2019-01-29 Acelon Chemicals and Fiber Corporation Method of preparing of natural graphene cellulose blended meltblown nonwoven fabric
WO2019051143A1 (en) * 2017-09-11 2019-03-14 Nanotek Instruments, Inc. Production of graphene materials directly from carbon/graphite precursor
US10240052B2 (en) 2011-09-30 2019-03-26 Ppg Industries Ohio, Inc. Supercapacitor electrodes including graphenic carbon particles
US10294375B2 (en) 2011-09-30 2019-05-21 Ppg Industries Ohio, Inc. Electrically conductive coatings containing graphenic carbon particles
CN109860575A (en) * 2019-03-06 2019-06-07 太原理工大学 A kind of coal base graphite microcrystal electrically conductive composite and its preparation method and application
US10351661B2 (en) 2015-12-10 2019-07-16 Ppg Industries Ohio, Inc. Method for producing an aminimide
US10377928B2 (en) 2015-12-10 2019-08-13 Ppg Industries Ohio, Inc. Structural adhesive compositions
US10566482B2 (en) 2013-01-31 2020-02-18 Global Graphene Group, Inc. Inorganic coating-protected unitary graphene material for concentrated photovoltaic applications
US10763490B2 (en) 2011-09-30 2020-09-01 Ppg Industries Ohio, Inc. Methods of coating an electrically conductive substrate and related electrodepositable compositions including graphenic carbon particles
US10861617B2 (en) 2012-11-02 2020-12-08 Global Graphene Group, Inc. Graphene oxide-coated graphitic foil and processes for producing same
US10919760B2 (en) 2013-02-14 2021-02-16 Global Graphene Group, Inc. Process for nano graphene platelet-reinforced composite material
US10947428B2 (en) 2010-11-19 2021-03-16 Ppg Industries Ohio, Inc. Structural adhesive compositions
US11430979B2 (en) 2013-03-15 2022-08-30 Ppg Industries Ohio, Inc. Lithium ion battery anodes including graphenic carbon particles
US11572277B2 (en) 2017-04-11 2023-02-07 Global Graphene Group, Inc. Eco-friendly production of graphene
WO2023018545A1 (en) * 2021-08-09 2023-02-16 Phillips 66 Company Methods for preparing nano-ordered carbon anode materials for lithium-ion batteries
WO2023225505A1 (en) * 2022-05-16 2023-11-23 Global Graphene Group, Inc. Production of graphene directly from biomass precursor

Families Citing this family (292)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069015A (en) * 2003-04-04 2008-03-27 Canon Inc Flaky carbonaceous particle and production method thereof
US20060286022A1 (en) * 2003-05-23 2006-12-21 Yoshiyuki Miyamoto Nanosized carbonaceous material three-dimensional structure and process for producing the same
JP3948000B2 (en) * 2003-08-26 2007-07-25 松下電器産業株式会社 High thermal conductivity member, method for manufacturing the same, and heat dissipation system using the same
US8153240B2 (en) * 2003-10-03 2012-04-10 College Of William And Mary Carbon nanostructures and methods of making and using the same
US9359481B2 (en) * 2003-11-26 2016-06-07 Owens Corning Intellectual Capital, Llc Thermoplastic foams and method of forming them using nano-graphite
US8568632B2 (en) * 2003-11-26 2013-10-29 Owens Corning Intellectual Capital, Llc Method of forming thermoplastic foams using nano-particles to control cell morphology
US20060019162A1 (en) * 2004-07-05 2006-01-26 Minoru Shirahige Graphite-base hydrogen storage material and production method thereof
US20080248355A1 (en) * 2005-03-11 2008-10-09 Nissan Motor Co., Ltd. Hydrogen Storage Material, Hydrogen Storage Structure, Hydrogen Storage, Hydrogen Storage Apparatus, Fuel Cell Vehicle, and Method of Manufacturing Hydrogen Storage Material
US7658901B2 (en) * 2005-10-14 2010-02-09 The Trustees Of Princeton University Thermally exfoliated graphite oxide
US20100072430A1 (en) * 2005-10-14 2010-03-25 Gergely John S Compositions of carbon nanosheets and process to make the same
US7662321B2 (en) * 2005-10-26 2010-02-16 Nanotek Instruments, Inc. Nano-scaled graphene plate-reinforced composite materials and method of producing same
US7566410B2 (en) * 2006-01-11 2009-07-28 Nanotek Instruments, Inc. Highly conductive nano-scaled graphene plate nanocomposites
US7862410B2 (en) * 2006-01-20 2011-01-04 American Power Conversion Corporation Air removal unit
US7626049B2 (en) * 2006-04-18 2009-12-01 E. I. Du Pont De Nemours And Company Stabilized divalent germanium and tin compounds, processes for making the compounds, and processes using the compounds
US7949572B2 (en) * 2006-06-27 2011-05-24 Google Inc. Distributed electronic commerce system with independent third party virtual shopping carts
US20080020193A1 (en) * 2006-07-24 2008-01-24 Jang Bor Z Hybrid fiber tows containning both nano-fillers and continuous fibers, hybrid composites, and their production processes
US7623340B1 (en) 2006-08-07 2009-11-24 Nanotek Instruments, Inc. Nano-scaled graphene plate nanocomposites for supercapacitor electrodes
US20080048152A1 (en) * 2006-08-25 2008-02-28 Jang Bor Z Process for producing nano-scaled platelets and nanocompsites
US7745528B2 (en) * 2006-10-06 2010-06-29 The Trustees Of Princeton University Functional graphene-rubber nanocomposites
US8110026B2 (en) * 2006-10-06 2012-02-07 The Trustees Of Princeton University Functional graphene-polymer nanocomposites for gas barrier applications
US7852612B2 (en) * 2006-10-30 2010-12-14 College Of William And Mary Supercapacitor using carbon nanosheets as electrode
WO2008143692A1 (en) * 2006-10-31 2008-11-27 The Regents Of The University Of California Graphite nano platelets for thermal and electrical applications
GB0622150D0 (en) * 2006-11-06 2006-12-20 Kontrakt Technology Ltd Anisotropic semiconductor film and method of production thereof
US7892514B2 (en) * 2007-02-22 2011-02-22 Nanotek Instruments, Inc. Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites
US9233850B2 (en) * 2007-04-09 2016-01-12 Nanotek Instruments, Inc. Nano-scaled graphene plate films and articles
US8132746B2 (en) * 2007-04-17 2012-03-13 Nanotek Instruments, Inc. Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites
US7824651B2 (en) * 2007-05-08 2010-11-02 Nanotek Instruments, Inc. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets
US7732859B2 (en) * 2007-07-16 2010-06-08 International Business Machines Corporation Graphene-based transistor
US20090022649A1 (en) * 2007-07-19 2009-01-22 Aruna Zhamu Method for producing ultra-thin nano-scaled graphene platelets
US8524067B2 (en) * 2007-07-27 2013-09-03 Nanotek Instruments, Inc. Electrochemical method of producing nano-scaled graphene platelets
US8753539B2 (en) * 2007-07-27 2014-06-17 Nanotek Instruments, Inc. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets
US20090028777A1 (en) * 2007-07-27 2009-01-29 Aruna Zhamu Environmentally benign chemical oxidation method of producing graphite intercalation compound, exfoliated graphite, and nano-scaled graphene platelets
KR20090026568A (en) * 2007-09-10 2009-03-13 삼성전자주식회사 Graphene sheet and process for preparing the same
KR101443217B1 (en) 2007-09-12 2014-09-19 삼성전자주식회사 Graphene shell and process for preparing the same
KR101443222B1 (en) 2007-09-18 2014-09-19 삼성전자주식회사 Graphene pattern and process for preparing the same
US7875219B2 (en) * 2007-10-04 2011-01-25 Nanotek Instruments, Inc. Process for producing nano-scaled graphene platelet nanocomposite electrodes for supercapacitors
US7790285B2 (en) * 2007-12-17 2010-09-07 Nanotek Instruments, Inc. Nano-scaled graphene platelets with a high length-to-width aspect ratio
US8883114B2 (en) * 2007-12-26 2014-11-11 Nanotek Instruments, Inc. Production of ultra-thin nano-scaled graphene platelets from meso-carbon micro-beads
WO2009106507A2 (en) * 2008-02-28 2009-09-03 Basf Se Graphite nanoplatelets and compositions
US9625062B2 (en) * 2008-04-07 2017-04-18 John M. Crain Fuel system components
US8535553B2 (en) * 2008-04-14 2013-09-17 Massachusetts Institute Of Technology Large-area single- and few-layer graphene on arbitrary substrates
US20100000441A1 (en) * 2008-07-01 2010-01-07 Jang Bor Z Nano graphene platelet-based conductive inks
JP5124373B2 (en) * 2008-07-11 2013-01-23 株式会社日立製作所 Electronic device, light-receiving / light-emitting device, electronic integrated circuit and optical integrated circuit using the same
US9190667B2 (en) * 2008-07-28 2015-11-17 Nanotek Instruments, Inc. Graphene nanocomposites for electrochemical cell electrodes
US9067794B1 (en) 2008-08-06 2015-06-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration Highly thermal conductive nanocomposites
US8418547B2 (en) * 2008-08-07 2013-04-16 The Trustees Of Columbia University In The City Of New York Force, pressure, or stiffness measurement or calibration using graphene or other sheet membrane
US8696938B2 (en) * 2008-08-25 2014-04-15 Nanotek Instruments, Inc. Supercritical fluid process for producing nano graphene platelets
US8114375B2 (en) * 2008-09-03 2012-02-14 Nanotek Instruments, Inc. Process for producing dispersible nano graphene platelets from oxidized graphite
US8216541B2 (en) * 2008-09-03 2012-07-10 Nanotek Instruments, Inc. Process for producing dispersible and conductive nano graphene platelets from non-oxidized graphitic materials
US8501318B2 (en) * 2008-09-03 2013-08-06 Nanotek Instruments, Inc. Dispersible and conductive nano graphene platelets
DE102008053691B3 (en) * 2008-10-29 2010-01-21 Humboldt-Universität Zu Berlin Device for cutting graphene, includes reception to receive graphene, cutting element loaded with catalytically active material in cutting edge area, device to displace reception and cutting element with the cutting edge, and heating device
US8580432B2 (en) 2008-12-04 2013-11-12 Nanotek Instruments, Inc. Nano graphene reinforced nanocomposite particles for lithium battery electrodes
CN101456554B (en) * 2009-01-06 2011-05-18 黑龙江大学 Method for preparing graphitization nano carbon
US9093693B2 (en) * 2009-01-13 2015-07-28 Samsung Electronics Co., Ltd. Process for producing nano graphene reinforced composite particles for lithium battery electrodes
US8309438B2 (en) 2009-03-03 2012-11-13 Board Of Regents, The University Of Texas System Synthesizing graphene from metal-carbon solutions using ion implantation
US8147791B2 (en) * 2009-03-20 2012-04-03 Northrop Grumman Systems Corporation Reduction of graphene oxide to graphene in high boiling point solvents
US8317984B2 (en) * 2009-04-16 2012-11-27 Northrop Grumman Systems Corporation Graphene oxide deoxygenation
US8652362B2 (en) * 2009-07-23 2014-02-18 Nanotek Instruments, Inc. Nano graphene-modified curing agents for thermoset resins
US8226801B2 (en) * 2009-07-27 2012-07-24 Nanotek Instruments, Inc. Mass production of pristine nano graphene materials
US8287699B2 (en) * 2009-07-27 2012-10-16 Nanotek Instruments, Inc. Production of chemically functionalized nano graphene materials
US8227386B2 (en) * 2009-08-18 2012-07-24 GM Global Technology Operations LLC Nanographene layers and particles and lubricants incorporating the same
US8222190B2 (en) * 2009-08-19 2012-07-17 Nanotek Instruments, Inc. Nano graphene-modified lubricant
US7999027B2 (en) * 2009-08-20 2011-08-16 Nanotek Instruments, Inc. Pristine nano graphene-modified tires
KR101105628B1 (en) 2009-10-07 2012-01-18 서강대학교산학협력단 Device for taking graphene from graphite
FR2962121B1 (en) 2009-11-03 2012-07-13 Centre Nat Rech Scient PREPARATION OF GRAPHENE BY MECHANICAL SLURRY OF GRAPHIC MATERIALS
FR2952049B1 (en) * 2009-11-03 2011-11-11 Centre Nat Rech Scient PREPARATION OF GRAPHENE BY MECHANICAL SLURRY OF GRAPHIC MATERIALS
US8263843B2 (en) * 2009-11-06 2012-09-11 The Boeing Company Graphene nanoplatelet metal matrix
KR20110054766A (en) * 2009-11-18 2011-05-25 삼성에스디아이 주식회사 Super-conductive nanoparticle, super-conductive nanoparticle powder, and lithium battery comprising the same
US8753740B2 (en) * 2009-12-07 2014-06-17 Nanotek Instruments, Inc. Submicron-scale graphitic fibrils, methods for producing same and compositions containing same
WO2011074987A1 (en) 2009-12-17 2011-06-23 Universitetssenteret På Kjeller Field effect transistor structure
DE102009054939A1 (en) * 2009-12-18 2011-06-22 SB LiMotive Company Ltd., Kyonggi Galvanic element
US8652687B2 (en) 2009-12-24 2014-02-18 Nanotek Instruments, Inc. Conductive graphene polymer binder for electrochemical cell electrodes
KR100988577B1 (en) 2010-01-08 2010-10-18 전남대학교산학협력단 Method of fabrication of graphene nano-sheets from turbostratic structure and graphene nano-sheets
US8080441B2 (en) * 2010-01-12 2011-12-20 Cree, Inc. Growing polygonal carbon from photoresist
WO2011117325A2 (en) 2010-03-23 2011-09-29 Solvay Sa Polymer compositions comprising semi-aromatic polyamides and graphene materials
CN103108905B (en) 2010-03-26 2016-01-13 夏威夷大学 Nano material strengthens resin and associated materials
US20110244661A1 (en) * 2010-04-04 2011-10-06 The Board Of Trustees Of The Leland Stanford Junior University Large Scale High Quality Graphene Nanoribbons From Unzipped Carbon Nanotubes
EP2374842B2 (en) 2010-04-06 2019-09-18 Borealis AG Semiconductive polyolefin composition comprising conductive filler
US8377408B2 (en) 2010-04-20 2013-02-19 High Temperature Physics, Llc Process for the production of carbon nanoparticles and sequestration of carbon
KR101213477B1 (en) 2010-05-04 2012-12-24 삼성에스디아이 주식회사 Negative active material containing super-conductive nanoparticle coated with high capacity negative material and lithium battery comprising same
SG186811A1 (en) * 2010-06-25 2013-02-28 Univ Singapore Methods of forming graphene by graphite exfoliation
US9053870B2 (en) * 2010-08-02 2015-06-09 Nanotek Instruments, Inc. Supercapacitor with a meso-porous nano graphene electrode
US9558860B2 (en) 2010-09-10 2017-01-31 Samsung Electronics Co., Ltd. Graphene-enhanced anode particulates for lithium ion batteries
JP5727017B2 (en) 2010-09-16 2015-06-03 グラフェンシック・エービーGraphensic AB Method for graphene growth
US8420042B2 (en) 2010-09-21 2013-04-16 High Temperature Physics, Llc Process for the production of carbon graphenes and other nanomaterials
TW201219447A (en) 2010-10-12 2012-05-16 Solvay Polymer compositions comprising poly(arylether ketone)s and graphene materials
JP5627390B2 (en) 2010-10-22 2014-11-19 株式会社東芝 Photoelectric conversion element and manufacturing method thereof
US8859143B2 (en) 2011-01-03 2014-10-14 Nanotek Instruments, Inc. Partially and fully surface-enabled metal ion-exchanging energy storage devices
US9166252B2 (en) 2010-12-23 2015-10-20 Nanotek Instruments, Inc. Surface-controlled lithium ion-exchanging energy storage device
US8889298B2 (en) 2011-08-30 2014-11-18 Nanotek Instruments, Inc. Surface-mediated lithium ion-exchanging energy storage device
CN102053735B (en) * 2010-12-27 2015-01-21 清华大学 Touch screen input fingerstall
US9575598B2 (en) * 2010-12-27 2017-02-21 Tsinghua University Inputting fingertip sleeve
US10326168B2 (en) 2011-01-03 2019-06-18 Nanotek Instruments, Inc. Partially and fully surface-enabled alkali metal ion-exchanging energy storage devices
CA2800269A1 (en) 2011-02-09 2012-08-16 Incubation Alliance, Inc. Method for producing multilayer graphene-coated substrate
GB201104096D0 (en) 2011-03-10 2011-04-27 Univ Manchester Production of graphene
CN103534205B (en) 2011-03-15 2018-12-28 绝世环球有限责任公司 Graphene, the facile syntheesis of Graphene derivative and abrasive material nano particle and their various uses include using as beneficial lubricant additive in tribology
WO2012165372A1 (en) * 2011-06-03 2012-12-06 積水化学工業株式会社 Composite material and method for producing same
CN102381701A (en) * 2011-08-01 2012-03-21 福州大学 Method for numerously preparing asphalt-based graphene material with low cost
US8969154B2 (en) 2011-08-23 2015-03-03 Micron Technology, Inc. Methods for fabricating semiconductor device structures and arrays of vertical transistor devices
JP6204004B2 (en) * 2011-08-31 2017-09-27 株式会社半導体エネルギー研究所 Manufacturing method of secondary battery
US9779883B2 (en) 2011-09-07 2017-10-03 Nanotek Instruments, Inc. Partially surface-mediated lithium ion-exchanging cells and method for operating same
US8747623B2 (en) 2011-10-11 2014-06-10 Nanotek Instruments, Inc. One-step production of graphene materials
US20130116114A1 (en) * 2011-11-07 2013-05-09 K Tube Technology LLC Systems, Devices, and/or Methods for Preparation of Graphene and Graphene Hybrid Composite Via the Pyrolysis of Milled Solid Carbon Sources
GB201201649D0 (en) * 2012-01-31 2012-03-14 Univ Manchester Graphene polymer composite
US8895189B2 (en) 2012-02-03 2014-11-25 Nanotek Instruments, Inc. Surface-mediated cells with high power density and high energy density
US9561955B2 (en) 2012-03-08 2017-02-07 Nanotek Instruments, Inc. Graphene oxide gel bonded graphene composite films and processes for producing same
GB201204279D0 (en) 2012-03-09 2012-04-25 Univ Manchester Production of graphene
CN102627272A (en) * 2012-04-12 2012-08-08 中国科学院长春应用化学研究所 Method for preparing less layer graphene sheet
US10079389B2 (en) 2012-05-18 2018-09-18 Xg Sciences, Inc. Silicon-graphene nanocomposites for electrochemical applications
US9363932B2 (en) 2012-06-11 2016-06-07 Nanotek Instruments, Inc. Integrated graphene film heat spreader for display devices
DE102013210162B4 (en) 2012-06-14 2020-01-23 International Business Machines Corporation Graphene-based structures and methods for shielding electromagnetic radiation
US9174413B2 (en) 2012-06-14 2015-11-03 International Business Machines Corporation Graphene based structures and methods for shielding electromagnetic radiation
US9413075B2 (en) 2012-06-14 2016-08-09 Globalfoundries Inc. Graphene based structures and methods for broadband electromagnetic radiation absorption at the microwave and terahertz frequencies
AU2013277941B2 (en) * 2012-06-21 2016-10-06 Monash University Conductive portions in insulating materials
US9404030B2 (en) * 2012-08-14 2016-08-02 Baker Hughes Incorporated Swellable article
US10229862B2 (en) 2012-11-02 2019-03-12 Nanotek Instruments, Inc. Thermal management system containing a graphene oxide-coated graphitic foil laminate for electronic device application
CN104919633A (en) 2012-11-15 2015-09-16 索尔维公司 Film forming composition comprising graphene material and conducting polymer
US9533889B2 (en) 2012-11-26 2017-01-03 Nanotek Instruments, Inc. Unitary graphene layer or graphene single crystal
US9803124B2 (en) 2012-12-05 2017-10-31 Nanotek Instruments, Inc. Process for producing unitary graphene matrix composites containing carbon or graphite fillers
US9208920B2 (en) 2012-12-05 2015-12-08 Nanotek Instruments, Inc. Unitary graphene matrix composites containing carbon or graphite fillers
US9833913B2 (en) 2012-12-28 2017-12-05 Nanotek Instruments, Inc. Graphene composite hand-held and hand-heated thawing tool
US9835390B2 (en) 2013-01-07 2017-12-05 Nanotek Instruments, Inc. Unitary graphene material-based integrated finned heat sink
JP5813678B2 (en) * 2013-02-15 2015-11-17 株式会社東芝 Semiconductor device
US10468152B2 (en) 2013-02-21 2019-11-05 Global Graphene Group, Inc. Highly conducting and transparent film and process for producing same
US9530531B2 (en) 2013-02-21 2016-12-27 Nanotek Instruments, Inc. Process for producing highly conducting and transparent films from graphene oxide-metal nanowire hybrid materials
US9156700B2 (en) 2013-02-25 2015-10-13 Nanotek Instruments, Inc. Process for producing unitary graphene materials
US9478422B2 (en) * 2013-02-25 2016-10-25 Solan, LLC Methods for fabricating refined graphite-based structures and devices made therefrom
CN103072982B (en) * 2013-02-28 2015-02-04 福州大学 Low-cost asphalt-based graphene sheet and preparation method thereof
WO2014138721A1 (en) * 2013-03-08 2014-09-12 Sri International High permittivity nanocomposites for electronic devices
US8871296B2 (en) 2013-03-14 2014-10-28 Nanotek Instruments, Inc. Method for producing conducting and transparent films from combined graphene and conductive nano filaments
US8927065B2 (en) 2013-04-15 2015-01-06 Nanotek Instruments, Inc. Process for producing continuous graphitic fibers from living graphene molecules
US10822725B2 (en) 2013-04-15 2020-11-03 Global Graphene Group, Inc. Continuous graphitic fibers from living graphene molecules
US9299473B2 (en) 2013-06-11 2016-03-29 Hamilton Sundstrand Corporation Composite electrically conductive structures
US9362018B2 (en) 2013-08-05 2016-06-07 Nanotek Instruments, Inc. Impregnated continuous graphitic fiber tows and composites containing same
US9657415B2 (en) 2013-08-05 2017-05-23 Nanotek Instruments, Inc. Fabric of continuous graphitic fiber yarns from living graphene molecules
GB2516919B (en) 2013-08-06 2019-06-26 Univ Manchester Production of graphene and graphane
US9484160B2 (en) 2013-09-23 2016-11-01 Nanotek Instruments, Inc. Large-grain graphene thin film current collector and secondary batteries containing same
US9618290B1 (en) * 2013-10-15 2017-04-11 Christopher M. Redmon Weapon barrel assembly
US9580325B2 (en) 2014-02-06 2017-02-28 Nanotek Instruments, Inc. Process for producing highly oriented graphene films
US9193132B2 (en) 2014-02-06 2015-11-24 Nanotek Instruments, Inc. Highly oriented graphene structures and process for producing same
EP3107863A4 (en) 2014-02-18 2017-10-04 Reme Technologies, LLC Graphene enhanced elastomeric stator
US9315388B2 (en) 2014-02-21 2016-04-19 Nanotek Instruments, Inc. Production of graphene materials in a cavitating fluid
US9382117B2 (en) 2014-04-03 2016-07-05 Nanotek Instruments, Inc. Process for producing highly conducting graphitic films from graphene liquid crystals
TWI495716B (en) * 2014-04-29 2015-08-11 Graphene dissipation structure
US9932226B2 (en) 2014-05-02 2018-04-03 The Boeing Company Composite material containing graphene
US10182515B2 (en) 2014-05-02 2019-01-15 The Boeing Company Conduction cooled module
US10368401B2 (en) * 2014-06-03 2019-07-30 Aurora Flight Sciences Corporation Multi-functional composite structures
AU2015271619B2 (en) 2014-06-06 2019-05-09 Nanoxplore Inc. Large scale production of thinned graphite, graphene, and graphite-graphene composites
US10748672B2 (en) 2014-07-17 2020-08-18 Global Graphene Group, Inc. Highly conductive graphene foams and process for producing same
US9742001B2 (en) 2014-08-07 2017-08-22 Nanotek Instruments, Inc. Graphene foam-protected anode active materials for lithium batteries
US9552900B2 (en) 2014-09-09 2017-01-24 Graphene Platform Corporation Composite conductive material, power storage device, conductive dispersion, conductive device, conductive composite and thermally conductive composite
US10102973B2 (en) 2014-09-12 2018-10-16 Nanotek Instruments, Inc. Graphene electrode based ceramic capacitor
WO2016043146A1 (en) 2014-09-17 2016-03-24 国立大学法人名古屋大学 Thermally conductive composition and method for producing same
WO2016048479A1 (en) * 2014-09-22 2016-03-31 Georgia Institute Of Technology Composite nanoparticle stabilized core carbon molecular sieve hollow fiber membranes having improved permeance
AU2015362043B2 (en) 2014-12-09 2019-09-12 Nanoxplore Inc. Large scale production of oxidized graphene
US10461321B2 (en) 2015-02-18 2019-10-29 Nanotek Instruments, Inc. Alkali metal-sulfur secondary battery containing a pre-sulfurized cathode and production process
US11258059B2 (en) 2015-02-18 2022-02-22 Global Graphene Group, Inc. Pre-sulfurized cathode for alkali metal-sulfur secondary battery and production process
US9481576B2 (en) 2015-02-24 2016-11-01 Angstron Materials Environmentally benign production of graphene materials
US9598593B2 (en) 2015-02-27 2017-03-21 Graphene Platform Corporation Graphene composite and method of producing the same
US9601763B2 (en) 2015-03-27 2017-03-21 Nanotek Instruments, Inc. Process for mass-producing silicon nanowires and silicon nanowire-graphene hybrid particulates
US9666899B2 (en) * 2015-03-30 2017-05-30 Nanotek Instruments, Inc. Active cathode layer for metal-sulfur secondary battery
US9755236B2 (en) 2015-04-08 2017-09-05 Nonotek Instruments, Inc. Dendrite-intercepting layer for alkali metal secondary battery
US10826113B2 (en) 2015-04-13 2020-11-03 Global Graphene Group, Inc. Zinc ion-exchanging energy storage device
US9666865B2 (en) * 2015-04-17 2017-05-30 Nanotek Instruments, Inc. Magnesium-sulfur secondary battery containing a metal polysulfide-preloaded active cathode layer
US9780349B2 (en) 2015-05-21 2017-10-03 Nanotek Instruments, Inc. Carbon matrix- and carbon matrix composite-based dendrite-intercepting layer for alkali metal secondary battery
US9780379B2 (en) 2015-05-21 2017-10-03 Nanotek Instruments, Inc. Alkali metal secondary battery containing a carbon matrix- or carbon matrix composite-based dendrite intercepting layer
TWI552956B (en) * 2015-05-29 2016-10-11 國立臺灣科技大學 Producing method of graphene and applications thereof
US10005099B2 (en) 2015-07-20 2018-06-26 Nanotek Instruments, Inc. Production of highly oriented graphene oxide films and graphitic films derived therefrom
US9741499B2 (en) 2015-08-24 2017-08-22 Nanotek Instruments, Inc. Production process for a supercapacitor having a high volumetric energy density
US9773622B2 (en) 2015-08-26 2017-09-26 Nanotek Instruments, Inc. Porous particles of interconnected 3D graphene as a supercapacitor electrode active material and production process
US10553357B2 (en) 2015-09-23 2020-02-04 Global Graphene Group, Inc. Monolithic film of integrated highly oriented halogenated graphene
US9809459B2 (en) 2015-09-23 2017-11-07 Nanotek Instruments, Inc. Process for producing monolithic film of integrated highly oriented halogenated graphene sheets or molecules
US9922775B2 (en) 2015-10-13 2018-03-20 Nanotek Instruments, Inc. Continuous process for producing electrodes for supercapacitors having high energy densities
US9779882B2 (en) 2015-11-23 2017-10-03 Nanotek Instruments, Inc. Method of producing supercapacitor electrodes and cells having high active mass loading
US10163540B2 (en) 2015-12-03 2018-12-25 Nanotek Instruments, Inc. Production process for highly conducting and oriented graphene film
US11772975B2 (en) 2015-12-03 2023-10-03 Global Graphene Group, Inc. Chemical-free production of graphene materials
US9926427B2 (en) 2015-12-10 2018-03-27 Nanotek Instruments, Inc. Chemical-free production of graphene-reinforced polymer matrix composites
US10010859B2 (en) 2015-12-28 2018-07-03 Nanotek Instruments, Inc. Integral 3D graphene-carbon hybrid foam and devices containing same
US9597657B1 (en) 2015-12-28 2017-03-21 Nanotek Instruments, Inc. Chemical-free production of 3D graphene-carbon hybrid foam
US9905373B2 (en) 2016-01-04 2018-02-27 Nanotek Instruments, Inc. Supercapacitor having an integral 3D graphene-carbon hybrid foam-based electrode
US9437372B1 (en) 2016-01-11 2016-09-06 Nanotek Instruments, Inc. Process for producing graphene foam supercapacitor electrode
US9966199B2 (en) 2016-01-11 2018-05-08 Nanotek Instruments, Inc. Supercapacitor having highly conductive graphene foam electrode
US9847184B2 (en) 2016-02-01 2017-12-19 Nanotek Instruments, Inc. Supercapacitor electrode having highly oriented and closely packed graphene sheets and production process
US10850496B2 (en) 2016-02-09 2020-12-01 Global Graphene Group, Inc. Chemical-free production of graphene-reinforced inorganic matrix composites
US11168404B2 (en) 2016-02-17 2021-11-09 Global Graphene Group, Inc. Electrochemical method of producing single-layer or few-layer graphene sheets
US11247906B2 (en) 2016-03-09 2022-02-15 Global Graphene Group, Inc. Electrochemical production of graphene sheets directly from graphite mineral
CN105800603B (en) * 2016-04-22 2018-01-09 华侨大学 A kind of quick method for preparing high-quality graphene
US10008723B1 (en) 2016-05-17 2018-06-26 Nanotek Instruments, Inc. Chemical-free production of graphene-wrapped electrode active material particles for battery applications
US9899672B2 (en) 2016-05-17 2018-02-20 Nanotek Instruments, Inc. Chemical-free production of graphene-encapsulated electrode active material particles for battery applications
US10170749B2 (en) 2016-06-07 2019-01-01 Nanotek Instruments, Inc. Alkali metal battery having an integral 3D graphene-carbon-metal hybrid foam-based electrode
US10199637B2 (en) 2016-06-07 2019-02-05 Nanotek Instruments, Inc. Graphene-metal hybrid foam-based electrode for an alkali metal battery
US10435797B2 (en) 2016-06-26 2019-10-08 Global Graphene Group, Inc. Electrochemical production of graphene sheets from coke or coal
US10081550B2 (en) 2016-06-26 2018-09-25 Nanotek Instruments, Inc. Direct ultrasonication production of graphene sheets from coke or coal
US10332693B2 (en) 2016-07-15 2019-06-25 Nanotek Instruments, Inc. Humic acid-based supercapacitors
US10081551B2 (en) 2016-07-15 2018-09-25 Nanotek Instruments, Inc. Supercritical fluid process for producing graphene from coke or coal
US11121360B2 (en) 2016-07-15 2021-09-14 Nanotek Instruments Group, Llc Supercritical fluid production of graphene-based supercapacitor electrode from coke or coal
US11254616B2 (en) 2016-08-04 2022-02-22 Global Graphene Group, Inc. Method of producing integral 3D humic acid-carbon hybrid foam
US9878303B1 (en) 2016-08-04 2018-01-30 Nanotek Instruments, Inc. Integral 3D humic acid-carbon hybrid foam and devices containing same
US10158122B2 (en) 2016-08-08 2018-12-18 Nanotek Instruments, Inc. Graphene oxide-bonded metal foil thin film current collector and battery and supercapacitor containing same
US10586661B2 (en) 2016-08-08 2020-03-10 Global Graphene Group, Inc. Process for producing graphene oxide-bonded metal foil thin film current collector for a battery or supercapacitor
US9988273B2 (en) 2016-08-18 2018-06-05 Nanotek Instruments, Inc. Process for producing highly oriented humic acid films and highly conducting graphitic films derived therefrom
US10731931B2 (en) 2016-08-18 2020-08-04 Global Graphene Group, Inc. Highly oriented humic acid films and highly conducting graphitic films derived therefrom and devices containing same
US10014519B2 (en) 2016-08-22 2018-07-03 Nanotek Instruments, Inc. Process for producing humic acid-bonded metal foil film current collector
US10597389B2 (en) 2016-08-22 2020-03-24 Global Graphene Group, Inc. Humic acid-bonded metal foil film current collector and battery and supercapacitor containing same
US10584216B2 (en) 2016-08-30 2020-03-10 Global Graphene Group, Inc. Process for producing humic acid-derived conductive foams
US10647595B2 (en) 2016-08-30 2020-05-12 Global Graphene Group, Inc. Humic acid-derived conductive foams and devices
US10593932B2 (en) 2016-09-20 2020-03-17 Global Graphene Group, Inc. Process for metal-sulfur battery cathode containing humic acid-derived conductive foam
US10003078B2 (en) 2016-09-20 2018-06-19 Nanotek Instruments, Inc. Metal-sulfur battery cathode containing humic acid-derived conductive foam impregnated with sulfur or sulfide
US9997784B2 (en) 2016-10-06 2018-06-12 Nanotek Instruments, Inc. Lithium ion battery anode containing silicon nanowires grown in situ in pores of graphene foam and production process
US10868304B2 (en) 2016-10-19 2020-12-15 Global Graphene Group, Inc. Battery having a low output voltage
US10083799B2 (en) 2017-01-04 2018-09-25 Nanotek Instruments, Inc. Flexible and shape-conformal rope-shape supercapacitors
US10283280B2 (en) 2017-01-04 2019-05-07 Nanotek Instruments, Inc. Process for flexible and shape-conformal rope-shape supercapacitors
US11217792B2 (en) 2017-01-23 2022-01-04 Global Graphene Group, Inc. Graphene-enabled metal fluoride and metal chloride cathode active materials for lithium batteries
US10559830B2 (en) 2017-01-26 2020-02-11 Global Graphene Group, Inc. Graphene foam-protected metal fluoride and metal chloride cathode active materials for lithium batteries
US10777808B2 (en) 2017-01-30 2020-09-15 Global Graphene Group, Inc. Exfoliated graphite worm-protected metal fluoride and metal chloride cathode active materials for lithium batteries
US10896784B2 (en) 2017-03-31 2021-01-19 Global Graphene Group, Inc. Direct microwave production of graphene
US10822239B2 (en) 2017-04-19 2020-11-03 Global Graphene Group, Inc. Microwave system and method for graphene production
US10903527B2 (en) 2017-05-08 2021-01-26 Global Graphene Group, Inc. Rolled 3D alkali metal batteries and production process
US10903020B2 (en) 2017-05-10 2021-01-26 Nanotek Instruments Group, Llc Rolled supercapacitor and production process
US10157714B1 (en) 2017-08-07 2018-12-18 Nanotek Instruments, Inc. Supercapacitor electrode having highly oriented and closely packed expanded graphite flakes and production process
US10526204B2 (en) * 2017-09-11 2020-01-07 Global Graphene Group, Inc. Production of graphene materials directly from carbon/graphite precursor
CN107759243A (en) * 2017-10-31 2018-03-06 广西旭腾实业集团有限公司 One kind is based on graphene and stone material foamed wall slab and preparation method thereof
US10730070B2 (en) 2017-11-15 2020-08-04 Global Graphene Group, Inc. Continuous process for manufacturing graphene-mediated metal-plated polymer article
US11332830B2 (en) 2017-11-15 2022-05-17 Global Graphene Group, Inc. Functionalized graphene-mediated metallization of polymer article
US11339054B2 (en) 2017-11-20 2022-05-24 Global Graphene Group, Inc. Continuous process and apparatus for producing graphene
GB201721817D0 (en) * 2017-12-22 2018-02-07 Univ Manchester Production of graphene materials
US10957495B2 (en) 2018-01-03 2021-03-23 Nanotek Instruments Group, Llc Supercapacitor and electrode having cellulose nanofiber-spaced graphene sheets and production process
US11555799B2 (en) 2018-01-04 2023-01-17 Lyten, Inc. Multi-part nontoxic printed batteries
CN108285547A (en) * 2018-01-16 2018-07-17 湖南国盛石墨科技有限公司 One kind is based on heat cure PET/ graphene heat conducting films and preparation method thereof
US11629420B2 (en) 2018-03-26 2023-04-18 Global Graphene Group, Inc. Production process for metal matrix nanocomposite containing oriented graphene sheets
US10629955B2 (en) 2018-04-06 2020-04-21 Global Graphene Group, Inc. Selenium preloaded cathode for alkali metal-selenium secondary battery and production process
EP3788666A4 (en) 2018-04-30 2022-01-19 Lyten, Inc. Lithium ion battery and battery materials
US11680173B2 (en) 2018-05-07 2023-06-20 Global Graphene Group, Inc. Graphene-enabled anti-corrosion coating
US11945971B2 (en) 2018-05-08 2024-04-02 Global Graphene Group, Inc. Anti-corrosion material-coated discrete graphene sheets and anti-corrosion coating composition containing same
WO2019217514A1 (en) 2018-05-08 2019-11-14 Nanotek Instruments, Inc. Anti-corrosion material-coated discrete graphene sheets and anti-corrosion coating composition containing same
US10886536B2 (en) 2018-05-10 2021-01-05 Global Graphene Group, Inc. Method of alkali metal-selenium secondary battery containing a graphene-based separator layer
US10903466B2 (en) 2018-05-10 2021-01-26 Global Graphene Group, Inc. Alkali metal-selenium secondary battery containing a graphene-based separator layer
US10865502B2 (en) 2018-05-14 2020-12-15 Global Graphene Group, Inc. Continuous graphene fibers from functionalized graphene sheets
US10934637B2 (en) 2018-05-21 2021-03-02 Global Graphene Group, Inc. Process for producing fabric of continuous graphene fiber yarns from functionalized graphene sheets
US10927478B2 (en) 2018-05-21 2021-02-23 Global Graphene Group, Inc. Fabric of continuous graphene fiber yarns from functionalized graphene sheets
US11420872B2 (en) 2018-05-31 2022-08-23 Global Graphene Group, Inc. Graphene foam-based sealing materials
US11401164B2 (en) 2018-05-31 2022-08-02 Global Graphene Group, Inc. Process for producing graphene foam-based sealing materials
US10734635B2 (en) 2018-06-01 2020-08-04 Global Graphene Group, Inc. Multi-level graphene-protected battery cathode active material particles
US10727479B2 (en) 2018-06-01 2020-07-28 Global Graphene Group, Inc. Method of producing multi-level graphene-protected anode active material particles for battery applications
US11038195B2 (en) 2018-06-01 2021-06-15 Global Graphene Group, Inc. Multi-level graphene-protected anode active material particles for battery applications
US10559815B2 (en) 2018-06-01 2020-02-11 Global Graphene Group, Inc. Method of producing multi-level graphene-protected cathode active material particles for battery applications
US11018336B2 (en) 2018-06-06 2021-05-25 Global Graphene Group, Inc. Multi-level graphene-protected anode active material particles for fast-charging lithium-ion batteries
US11186729B2 (en) 2018-07-09 2021-11-30 Global Graphene Group, Inc. Anti-corrosion coating composition
US10894397B2 (en) 2018-07-09 2021-01-19 Global Graphene Group, Inc. Process for producing graphene foam laminate based sealing materials
US10930924B2 (en) 2018-07-23 2021-02-23 Global Graphene Group, Inc. Chemical-free production of surface-stabilized lithium metal particles, electrodes and lithium battery containing same
US11021371B2 (en) 2018-07-25 2021-06-01 Global Graphene Group, Inc. Hollow graphene balls and devices containing same
US11603316B2 (en) 2018-07-25 2023-03-14 Global Graphene Group, Inc. Chemical-free production of hollow graphene balls
US11453594B2 (en) 2018-07-26 2022-09-27 Global Graphene Group, Inc. Environmentally benign production of graphene oxide
US11572280B2 (en) 2018-08-02 2023-02-07 Global Graphene Group, Inc. Environmentally benign production of graphene suspensions
US11152620B2 (en) 2018-10-18 2021-10-19 Global Graphene Group, Inc. Process for producing porous graphene particulate-protected anode active materials for lithium batteries
US10971281B2 (en) 2018-11-27 2021-04-06 Global Graphene Group, Inc. Conducting polymer composite containing ultra-low loading of graphene
US11641012B2 (en) 2019-01-14 2023-05-02 Global Graphene Group, Inc. Process for producing graphene/silicon nanowire hybrid material for a lithium-ion battery
US11394028B2 (en) 2019-01-21 2022-07-19 Global Graphene Group, Inc. Graphene-carbon hybrid foam-protected anode active material coating for lithium-ion batteries
CN109680176B (en) * 2019-03-01 2020-08-28 北京工业大学 Graphene reinforced magnesium-based composite material and preparation method thereof
US11469415B2 (en) 2019-03-06 2022-10-11 Global Graphene Group, Inc. Porous particulates of graphene shell-protected alkali metal, electrodes, and alkali metal battery
US11267711B2 (en) 2019-03-22 2022-03-08 Global Graphene Group, Inc. Production of graphitic films directly from highly aromatic molecules
US11142459B2 (en) 2019-04-03 2021-10-12 Nanotek Instruments Group, Llc Dense graphene balls for hydrogen storage
US11433353B2 (en) 2019-06-06 2022-09-06 Savannah River Nuclear Solutions, Llc Hydrogen isotope separation methods and systems
US11677105B2 (en) 2019-07-18 2023-06-13 Global Graphene Group, Inc. Temperature-regulated battery system and method of operating same
US11444339B2 (en) 2019-07-23 2022-09-13 Global Graphene Group, Inc. Battery fast-charging system and method of operating same
US11502341B2 (en) 2019-07-24 2022-11-15 Global Graphene Group, Inc. Battery fast-charging and cooling system and method of operating same
US11198611B2 (en) 2019-07-30 2021-12-14 Lyten, Inc. 3D self-assembled multi-modal carbon-based particle
US11335911B2 (en) 2019-08-23 2022-05-17 Lyten, Inc. Expansion-tolerant three-dimensional (3D) carbon-based structures incorporated into lithium sulfur (Li S) battery electrodes
US11946704B2 (en) 2019-09-03 2024-04-02 Global Graphene Group, Inc. Graphene-based elastic heat spreader films
US11258070B2 (en) 2019-09-24 2022-02-22 Global Graphene Group, Inc. Graphene-enabled bi-polar electrode and battery containing same
US11121359B2 (en) 2019-10-10 2021-09-14 Global Graphene Group, Inc. Production process for graphene-enabled bi-polar electrode and battery containing same
US11027252B2 (en) 2019-10-16 2021-06-08 Global Graphene Group, Inc. Reactor for continuous production of graphene and 2D inorganic compounds
US11508966B2 (en) 2019-10-25 2022-11-22 Lyten, Inc. Protective carbon layer for lithium (Li) metal anodes
US11631893B2 (en) 2019-10-25 2023-04-18 Lyten, Inc. Artificial solid electrolyte interface cap layer for an anode in a Li S battery system
US11133495B2 (en) 2019-10-25 2021-09-28 Lyten, Inc. Advanced lithium (LI) ion and lithium sulfur (LI S) batteries
US11127941B2 (en) 2019-10-25 2021-09-21 Lyten, Inc. Carbon-based structures for incorporation into lithium (Li) ion battery electrodes
US11539074B2 (en) 2019-10-25 2022-12-27 Lyten, Inc. Artificial solid electrolyte interface (A-SEI) cap layer including graphene layers with flexible wrinkle areas
US11127942B2 (en) 2019-10-25 2021-09-21 Lyten, Inc. Systems and methods of manufacture of carbon based structures incorporated into lithium ion and lithium sulfur (li s) battery electrodes
US11374216B2 (en) 2019-11-07 2022-06-28 Global Graphene Group, Inc. Graphene foam-protected phosphorus material for lithium-ion or sodium-ion batteries
US11390528B2 (en) 2019-11-26 2022-07-19 Global Graphene Group, Inc. Combined graphene balls and metal particles for an anode of an alkali metal battery
US11837729B2 (en) 2020-03-19 2023-12-05 Global Graphene Group, Inc. Conducting polymer network-protected cathode active materials for lithium secondary batteries
US11923526B2 (en) 2020-05-11 2024-03-05 Global Graphene Group, Inc. Process for producing graphene-protected metal foil current collector for a battery or supercapacitor
US11325349B2 (en) 2020-05-19 2022-05-10 Global Graphene Group, Inc. Graphitic film-based elastic heat spreaders
US11949083B2 (en) 2020-06-11 2024-04-02 Global Graphene Group, Inc. Battery module or pack with a distributed cooling and fire protection system and method of operating same
US20220097326A1 (en) 2020-09-29 2022-03-31 The Goodyear Tire & Rubber Company Self sealing tire
IL305452A (en) 2021-05-04 2023-10-01 Tmtp Labs Inc Apparatus and method for exfoliating graphite
US20220410516A1 (en) 2021-06-24 2022-12-29 The Goodyear Tire & Rubber Company Self sealing tire
US20230158761A1 (en) 2021-10-06 2023-05-25 The Goodyear Tire & Rubber Company Self-sealing pneumatic tire
US20230104547A1 (en) 2021-10-06 2023-04-06 The Goodyear Tire & Rubber Company Self-sealing pneumatic tire with noise suppression characteristics
CN113882145B (en) * 2021-11-17 2024-02-13 湖南东映碳材料科技股份有限公司 Preparation method of carbon fiber with pyrolytic graphite deposited on surface
US11845852B2 (en) 2021-12-07 2023-12-19 The Goodyear Tire & Rubber Company Low hysteresis sealant composition for self-sealing tire
US11870063B1 (en) 2022-10-24 2024-01-09 Lyten, Inc. Dual layer gradient cathode electrode structure for reducing sulfide transfer

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2798878A (en) * 1954-07-19 1957-07-09 Nat Lead Co Preparation of graphitic acid
US3925524A (en) * 1972-06-22 1975-12-09 Celanese Corp Process for the production of carbon filaments
US4388227A (en) * 1979-03-02 1983-06-14 Celanese Corporation Intercalation of graphitic carbon fibers
US4915925A (en) * 1985-02-11 1990-04-10 Chung Deborah D L Exfoliated graphite fibers and associated method
US4987175A (en) * 1988-11-21 1991-01-22 Battelle Memorial Institute Enhancement of the mechanical properties by graphite flake addition
US5019446A (en) * 1988-11-21 1991-05-28 Battelle Memorial Institute Enhancement of mechanical properties of polymers by thin flake addition and apparatus for producing such thin flakes
US5149584A (en) * 1990-10-23 1992-09-22 Baker R Terry K Carbon fiber structures having improved interlaminar properties
US5186919A (en) * 1988-11-21 1993-02-16 Battelle Memorial Institute Method for producing thin graphite flakes with large aspect ratios
US6287694B1 (en) * 1998-03-13 2001-09-11 Superior Graphite Co. Method for expanding lamellar forms of graphite and resultant product
US6479030B1 (en) * 1997-09-16 2002-11-12 Inorganic Specialists, Inc. Carbon electrode material
US6596396B2 (en) * 2000-08-09 2003-07-22 Mitsubishi Gas Chemical Company, Inc. Thin-film-like particles having skeleton constructed by carbons and isolated films
US6863943B2 (en) * 2001-01-12 2005-03-08 Georgia Tech Research Corporation Semiconducting oxide nanostructures
US6872330B2 (en) * 2002-05-30 2005-03-29 The Regents Of The University Of California Chemical manufacture of nanostructured materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129305A1 (en) * 2002-01-08 2003-07-10 Yihong Wu Two-dimensional nano-sized structures and apparatus and methods for their preparation
US20040127621A1 (en) * 2002-09-12 2004-07-01 Board Of Trustees Of Michigan State University Expanded graphite and products produced therefrom

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2798878A (en) * 1954-07-19 1957-07-09 Nat Lead Co Preparation of graphitic acid
US3925524A (en) * 1972-06-22 1975-12-09 Celanese Corp Process for the production of carbon filaments
US4388227A (en) * 1979-03-02 1983-06-14 Celanese Corporation Intercalation of graphitic carbon fibers
US4915925A (en) * 1985-02-11 1990-04-10 Chung Deborah D L Exfoliated graphite fibers and associated method
US5186919A (en) * 1988-11-21 1993-02-16 Battelle Memorial Institute Method for producing thin graphite flakes with large aspect ratios
US4987175A (en) * 1988-11-21 1991-01-22 Battelle Memorial Institute Enhancement of the mechanical properties by graphite flake addition
US5019446A (en) * 1988-11-21 1991-05-28 Battelle Memorial Institute Enhancement of mechanical properties of polymers by thin flake addition and apparatus for producing such thin flakes
US5149584A (en) * 1990-10-23 1992-09-22 Baker R Terry K Carbon fiber structures having improved interlaminar properties
US6479030B1 (en) * 1997-09-16 2002-11-12 Inorganic Specialists, Inc. Carbon electrode material
US6287694B1 (en) * 1998-03-13 2001-09-11 Superior Graphite Co. Method for expanding lamellar forms of graphite and resultant product
US6596396B2 (en) * 2000-08-09 2003-07-22 Mitsubishi Gas Chemical Company, Inc. Thin-film-like particles having skeleton constructed by carbons and isolated films
US6863943B2 (en) * 2001-01-12 2005-03-08 Georgia Tech Research Corporation Semiconducting oxide nanostructures
US6872330B2 (en) * 2002-05-30 2005-03-29 The Regents Of The University Of California Chemical manufacture of nanostructured materials

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Dahn, et al., Mechanisms for Lithium Insertion in Carbonaceous Materials, Science 1995; 270: 590-593 *
Fitzer, et al., Recommended Terminology for the Description of Carbon as a Solid, Pure & Appl. Chem. 1995; 67(3): 473-506 *

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100222482A1 (en) * 2006-09-26 2010-09-02 Jang Bor Z Mass production of nano-scaled platelets and products
US9023478B2 (en) * 2006-11-15 2015-05-05 Board Of Trustees Of Michigan State University Micropatterning of conductive graphite particles using microcontact printing
US20130009825A1 (en) * 2006-11-15 2013-01-10 Board Of Trustees Of Michigan State University Micropatterning of conductive graphite particles using microcontact printing
US20110095244A1 (en) * 2008-06-30 2011-04-28 Dow Global Technologies, Inc. Polymer composite with intumescent graphene
US20100092809A1 (en) * 2008-10-10 2010-04-15 Board Of Trustees Of Michigan State University Electrically conductive, optically transparent films of exfoliated graphite nanoparticles and methods of making the same
US8252196B2 (en) 2008-10-27 2012-08-28 Samsung Electronics Co., Ltd. Method for preparing nanotubes of piezoelectric material and nanotubes of piezoelectric material obtained thereby
US20100101710A1 (en) * 2008-10-27 2010-04-29 Samsung Electronics Co., Ltd. Method for removing a carbonization catalyst from a graphene sheet and method for transferring the graphene sheet
US8133969B2 (en) 2008-10-27 2012-03-13 Samsung Electronics Co., Ltd. Method for removing a carbonization catalyst from a graphene sheet and method for transferring the graphene sheet
US8734666B2 (en) 2008-10-27 2014-05-27 Samsung Electronics Co., Ltd. Method for preparing nanotubes of piezoelectric material and nanotubes of piezoelectric material obtained thereby
US8350001B2 (en) 2008-10-27 2013-01-08 Samsung Electronics Co., Ltd. Method for removing a carbonization catalyst from a graphene sheet and method for transferring the graphene sheet
US20110209816A1 (en) * 2008-10-27 2011-09-01 Samsung Electronics Co., Ltd. Method for removing a carbonization catalyst from a graphene sheet and method for transferring the graphene sheet
US7968674B2 (en) 2008-10-27 2011-06-28 Samsung Electronics Co., Ltd. Method for removing a carbonization catalyst from a graphene sheet and method for transferring the graphene sheet
US20100102033A1 (en) * 2008-10-27 2010-04-29 Samsung Electronics Co., Ltd. Method for preparing nanotubes of piezoelectric material and nanotubes of piezoelectric material obtained thereby
US8198349B2 (en) 2008-11-18 2012-06-12 GL Global Technology Operations LLC Self-healing and scratch resistant shape memory polymer system
US8664299B2 (en) 2008-11-18 2014-03-04 GM Global Technology Operations LLC Self-healing and scratch resistant shape memory polymer system
US20100125113A1 (en) * 2008-11-18 2010-05-20 Gm Global Technology Operations, Inc. Self-healing and scratch resistant shape memory polymer system
US8980416B2 (en) 2009-02-17 2015-03-17 Mcalister Technologies, Llc Architectural construct having for example a plurality of architectural crystals
US20110206915A1 (en) * 2009-02-17 2011-08-25 Mcalister Technologies, Llc Architectural construct having for example a plurality of architectural crystals
US9321894B2 (en) * 2009-03-16 2016-04-26 Vorbeck Materials Corporation Reinforced polymeric articles
US20120121840A1 (en) * 2009-03-16 2012-05-17 Kordsa Global Endustriyel Iplik Ve Kord Bezi Sanayi Ve Ticaret A.S. Reinforced polymeric articles
US9085667B2 (en) 2009-03-16 2015-07-21 Vorbeck Materials Corporation Reinforced polymeric articles
WO2010107762A1 (en) * 2009-03-16 2010-09-23 Aksay Ilhan A Polymeric fibers and articles made therefrom
US8449959B2 (en) * 2009-03-16 2013-05-28 Kordsa Global Endustriyel Iplik Ve Kord Bezi Sanayi Ve Ticaret A.S. Reinforced polymeric articles
US9512290B2 (en) 2009-03-16 2016-12-06 Vorbeck Materials Corporation Reinforced polymeric articles
WO2010107763A1 (en) * 2009-03-16 2010-09-23 Aksay Ilhan A Reinforced polymeric articles
US9926414B2 (en) 2009-03-16 2018-03-27 Vorbeck Materials Corporation Reinforced polymeric articles
US20130334410A1 (en) * 2009-04-03 2013-12-19 Brookhaven Science Associates, Llc Monolayer and/or Few-Layer Graphene on Metal or Metal-Coated Substrates
US9006644B2 (en) * 2009-04-03 2015-04-14 Brookhaven Science Associates, Llc Monolayer and/or few-layer graphene on metal or metal-coated substrates
US20100255984A1 (en) * 2009-04-03 2010-10-07 Brookhaven Science Associates, Llc Monolayer and/or Few-Layer Graphene On Metal or Metal-Coated Substrates
US20100323113A1 (en) * 2009-06-18 2010-12-23 Ramappa Deepak A Method to Synthesize Graphene
WO2011042800A1 (en) 2009-10-07 2011-04-14 Polimeri Europa S.P.A. Expandable thermoplastic nanocomposite polymeric compositions with an improved thermal insulation capacity
WO2011146090A2 (en) * 2009-11-24 2011-11-24 Kansas State University Research Foundation Production of graphene nanoribbons with controlled dimensions and crystallographic orientation
WO2011146090A3 (en) * 2009-11-24 2012-03-01 Kansas State University Research Foundation Production of graphene nanoribbons with controlled dimensions and crystallographic orientation
US9272911B2 (en) 2009-11-24 2016-03-01 Vikas Berry Production of graphene nanoribbons with controlled dimensions and crystallographic orientation
US9112240B2 (en) * 2010-01-04 2015-08-18 Nanotek Instruments, Inc. Lithium metal-sulfur and lithium ion-sulfur secondary batteries containing a nano-structured cathode and processes for producing same
US20110165466A1 (en) * 2010-01-04 2011-07-07 Aruna Zhamu Lithium metal-sulfur and lithium ion-sulfur secondary batteries containing a nano-structured cathode and processes for producing same
WO2012039533A1 (en) * 2010-09-20 2012-03-29 Snu R&Db Foundation Graphene structure, method of forming the graphene structure, and transparent electrode including the graphene structure
US9562175B2 (en) 2010-11-19 2017-02-07 Ppg Industries Ohio, Inc. Adhesive compositions containing graphenic carbon particles
US10947428B2 (en) 2010-11-19 2021-03-16 Ppg Industries Ohio, Inc. Structural adhesive compositions
US11629276B2 (en) 2010-11-19 2023-04-18 Ppg Industries Ohio, Inc. Structural adhesive compositions
US8796361B2 (en) 2010-11-19 2014-08-05 Ppg Industries Ohio, Inc. Adhesive compositions containing graphenic carbon particles
US9260308B2 (en) 2011-04-19 2016-02-16 Graphene Technologies, Inc. Nanomaterials and process for making the same
US20120282446A1 (en) * 2011-05-03 2012-11-08 Korea Institute Of Science And Technology Carbon materials, product comprising the same, and method for preparing the same
CN102259849A (en) * 2011-06-09 2011-11-30 无锡第六元素高科技发展有限公司 Method for preparing graphene by utilizing solid carbon source
WO2013025631A3 (en) * 2011-08-12 2013-04-11 Mcalister Technologies, Llc Methods for manufacturing architectural constructs
US8828491B2 (en) 2011-08-12 2014-09-09 Mcalister Technologies, Llc Methods for manufacturing architectural constructs
CN103889897A (en) * 2011-08-12 2014-06-25 麦卡利斯特技术有限责任公司 Methods for manufacturing architectural constructs
US9221688B2 (en) 2011-09-30 2015-12-29 Ppg Industries Ohio, Inc. Production of graphenic carbon particles utilizing hydrocarbon precursor materials
US11616220B2 (en) 2011-09-30 2023-03-28 Ppg Industries Ohio, Inc. Electrodepositable compositions and electrodeposited coatings including graphenic carbon particles
US10294375B2 (en) 2011-09-30 2019-05-21 Ppg Industries Ohio, Inc. Electrically conductive coatings containing graphenic carbon particles
US10240052B2 (en) 2011-09-30 2019-03-26 Ppg Industries Ohio, Inc. Supercapacitor electrodes including graphenic carbon particles
US8486363B2 (en) 2011-09-30 2013-07-16 Ppg Industries Ohio, Inc. Production of graphenic carbon particles utilizing hydrocarbon precursor materials
US8486364B2 (en) 2011-09-30 2013-07-16 Ppg Industries Ohio, Inc. Production of graphenic carbon particles utilizing methane precursor material
US10763490B2 (en) 2011-09-30 2020-09-01 Ppg Industries Ohio, Inc. Methods of coating an electrically conductive substrate and related electrodepositable compositions including graphenic carbon particles
US9988551B2 (en) 2011-09-30 2018-06-05 Ppg Industries Ohio, Inc. Black pigments comprising graphenic carbon particles
US9938416B2 (en) 2011-09-30 2018-04-10 Ppg Industries Ohio, Inc. Absorptive pigments comprising graphenic carbon particles
US9475946B2 (en) 2011-09-30 2016-10-25 Ppg Industries Ohio, Inc. Graphenic carbon particle co-dispersions and methods of making same
US9832818B2 (en) 2011-09-30 2017-11-28 Ppg Industries Ohio, Inc. Resistive heating coatings containing graphenic carbon particles
US9761903B2 (en) 2011-09-30 2017-09-12 Ppg Industries Ohio, Inc. Lithium ion battery electrodes including graphenic carbon particles
US10167198B2 (en) 2012-02-14 2019-01-01 Sekisui Chemical Co., Ltd. Method for producing flake graphite, and flake graphite
US20130264041A1 (en) * 2012-04-09 2013-10-10 Aruna Zhamu Thermal management system containing an integrated graphene film for electronic devices
US9360905B2 (en) * 2012-04-09 2016-06-07 Nanotek Instruments, Inc. Thermal management system containing an integrated graphene film for electronic devices
WO2014026194A1 (en) * 2012-08-10 2014-02-13 High Temperature Physics, Llc System and process for functionalizing graphene
US20140079932A1 (en) * 2012-09-04 2014-03-20 The Trustees Of Princeton University Nano-graphene and nano-graphene oxide
US20150247041A1 (en) * 2012-10-29 2015-09-03 University Of Ulster Anti-corrosion coatings
US10011723B2 (en) * 2012-10-29 2018-07-03 University Of Ulster Anti-corrosion coatings
US10861617B2 (en) 2012-11-02 2020-12-08 Global Graphene Group, Inc. Graphene oxide-coated graphitic foil and processes for producing same
US10566482B2 (en) 2013-01-31 2020-02-18 Global Graphene Group, Inc. Inorganic coating-protected unitary graphene material for concentrated photovoltaic applications
US10919760B2 (en) 2013-02-14 2021-02-16 Global Graphene Group, Inc. Process for nano graphene platelet-reinforced composite material
US11430979B2 (en) 2013-03-15 2022-08-30 Ppg Industries Ohio, Inc. Lithium ion battery anodes including graphenic carbon particles
US9534296B2 (en) 2013-03-15 2017-01-03 Mcalister Technologies, Llc Methods of manufacture of engineered materials and devices
US9478365B2 (en) * 2013-05-03 2016-10-25 The Governors Of The University Of Alberta Carbon nanosheets
US20140328006A1 (en) * 2013-05-03 2014-11-06 The Governors Of The University Of Alberta Carbon nanosheets
US10170251B2 (en) 2013-05-03 2019-01-01 The Governors Of The University Of Alberta Carbon nanosheets
CN104163417A (en) * 2013-05-20 2014-11-26 东丽先端材料研究开发(中国)有限公司 Method for preparing graphene by peeling off graphite
US9511663B2 (en) 2013-05-29 2016-12-06 Mcalister Technologies, Llc Methods for fuel tank recycling and net hydrogen fuel and carbon goods production along with associated apparatus and systems
US10099929B2 (en) * 2013-06-13 2018-10-16 Neograf Solutions, Llc Method of producing a graphene material
US20160002046A1 (en) * 2013-06-13 2016-01-07 Graftech International Holdings Inc. Method of producing a graphene material
US9574094B2 (en) 2013-12-09 2017-02-21 Ppg Industries Ohio, Inc. Graphenic carbon particle dispersions and methods of making same
US9404058B2 (en) * 2014-09-09 2016-08-02 Graphene Platform Corporation Method for producing a composite lubricating material
US9752035B2 (en) 2014-09-09 2017-09-05 Graphene Platform Corporation Composite lubricating material, engine oil, grease, and lubricant, and method of producing a composite lubricating material
US10190243B2 (en) * 2015-10-20 2019-01-29 Acelon Chemicals and Fiber Corporation Method of preparing of natural graphene cellulose blended meltblown nonwoven fabric
US10190242B2 (en) * 2015-10-20 2019-01-29 Acelon Chemicals and Fiber Corporation Method of preparing of natural graphene cellulose blended spunbond nonwoven fabric
US10377928B2 (en) 2015-12-10 2019-08-13 Ppg Industries Ohio, Inc. Structural adhesive compositions
US10351661B2 (en) 2015-12-10 2019-07-16 Ppg Industries Ohio, Inc. Method for producing an aminimide
US11518844B2 (en) 2015-12-10 2022-12-06 Ppg Industries Ohio, Inc. Method for producing an aminimide
US11674062B2 (en) 2015-12-10 2023-06-13 Ppg Industries Ohio, Inc. Structural adhesive compositions
CN105480971A (en) * 2016-01-29 2016-04-13 福州大学 Preparation method of asphalt-based three-dimensional mesoporous graphene material
CN106185881A (en) * 2016-06-07 2016-12-07 黑龙江省宝泉岭农垦帝源矿业有限公司 A kind of method that in utilization, low-carbon (LC) Fine particle processing prepares sulphur-free expanded graphite
CN106185882A (en) * 2016-06-07 2016-12-07 黑龙江省宝泉岭农垦帝源矿业有限公司 A kind of method that in utilization, low-carbon (LC) Fine particle processing prepares low-sulphur expanded graphite
US11572277B2 (en) 2017-04-11 2023-02-07 Global Graphene Group, Inc. Eco-friendly production of graphene
WO2019051143A1 (en) * 2017-09-11 2019-03-14 Nanotek Instruments, Inc. Production of graphene materials directly from carbon/graphite precursor
CN109860575A (en) * 2019-03-06 2019-06-07 太原理工大学 A kind of coal base graphite microcrystal electrically conductive composite and its preparation method and application
WO2023018545A1 (en) * 2021-08-09 2023-02-16 Phillips 66 Company Methods for preparing nano-ordered carbon anode materials for lithium-ion batteries
WO2023225505A1 (en) * 2022-05-16 2023-11-23 Global Graphene Group, Inc. Production of graphene directly from biomass precursor

Also Published As

Publication number Publication date
US7071258B1 (en) 2006-07-04

Similar Documents

Publication Publication Date Title
US7071258B1 (en) Nano-scaled graphene plates
US20050271574A1 (en) Process for producing nano-scaled graphene plates
Dresselhaus et al. Relation of carbon nanotubes to other carbon materials
Endo et al. Microstructural changes induced in “stacked cup” carbon nanofibers by heat treatment
US9233850B2 (en) Nano-scaled graphene plate films and articles
US8132746B2 (en) Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites
Scharff New carbon materials for research and technology
US7790285B2 (en) Nano-scaled graphene platelets with a high length-to-width aspect ratio
Yasuda Carbon alloys: Novel concepts to develop carbon science and technology
Ghosh et al. Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution
Terrones et al. N-doping and coalescence of carbon nanotubes: synthesis and electronic properties
US8524067B2 (en) Electrochemical method of producing nano-scaled graphene platelets
US7824651B2 (en) Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets
US8114373B2 (en) Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites
US20080048152A1 (en) Process for producing nano-scaled platelets and nanocompsites
US8501348B2 (en) Submicron-scale and lower-micron graphitic fibrils as an anode active material for a lithium ion battery
EP2431325B1 (en) Process for producing carbon nanotubes
US8753740B2 (en) Submicron-scale graphitic fibrils, methods for producing same and compositions containing same
Lee et al. Carbon nanosheets by the graphenization of ungraphitizable isotropic pitch molecules
KR101689337B1 (en) A method for producing graphene with rapid expansion and graphene made thereby
Ha et al. Substitutional boron doping of carbon materials
Wang Nitrogen-induced carbon nanobells and their properties
Zhi et al. Boron carbonitride nanotubes
JP4246557B2 (en) Metal-carbon composite material
Goto et al. Nanostructures of pyrolytic carbon from a polyacetylene thin film

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION