EP1986541A2 - Endoscope - Google Patents

Endoscope

Info

Publication number
EP1986541A2
EP1986541A2 EP07717024A EP07717024A EP1986541A2 EP 1986541 A2 EP1986541 A2 EP 1986541A2 EP 07717024 A EP07717024 A EP 07717024A EP 07717024 A EP07717024 A EP 07717024A EP 1986541 A2 EP1986541 A2 EP 1986541A2
Authority
EP
European Patent Office
Prior art keywords
imaging device
distal end
insertion tube
endoscope
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07717024A
Other languages
German (de)
French (fr)
Inventor
Lex Bayer
Fred Rasmussen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avantis Medical Systems Inc
Original Assignee
Avantis Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/609,838 external-priority patent/US8182422B2/en
Application filed by Avantis Medical Systems Inc filed Critical Avantis Medical Systems Inc
Priority claimed from PCT/US2007/002096 external-priority patent/WO2007087421A2/en
Publication of EP1986541A2 publication Critical patent/EP1986541A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00181Optical arrangements characterised by the viewing angles for multiple fixed viewing angles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00183Optical arrangements characterised by the viewing angles for variable viewing angles

Definitions

  • the present invention relates to an endoscope.
  • An endoscope is a medical device comprising a flexible tube and a camera mounted on the distal end of the tube.
  • the endoscope is insertable into an internal body cavity through a body orifice to examine the body cavity and tissues for diagnosis.
  • the tube of the endoscope has one or more longitudinal channels, through which an instrument can reach the body cavity to take samples of suspicious tissues or to perform other surgical procedures such as polypectomy.
  • endoscopes There are many types of endoscopes, and they are named in relation to the organs or areas with which they are used. For example, gastroscopes are used for examination and treatment of the esophagus, stomach and duodenum; colonoscopes for the colon; bronchoscopes for the bronchi; laparoscopes for the peritoneal cavity; sigmoidoscopes for the rectum and the sigmoid colon; arthroscopes for joints; cystoscopes for the urinary bladder; and angioscopes for the examination of blood vessels.
  • gastroscopes are used for examination and treatment of the esophagus, stomach and duodenum
  • colonoscopes for the colon
  • bronchoscopes for the bronchi
  • laparoscopes for the peritoneal cavity
  • sigmoidoscopes for the rectum and the sigmoid colon
  • arthroscopes for joints
  • cystoscopes for the urinary bladder
  • angioscopes for the examination of blood vessels
  • Each endoscope has a single forward viewing camera mounted at the distal end of the endoscope to transmit an image to an eyepiece or video display at the proximal end.
  • the camera is used to assist a medical professional in advancing the endoscope into a body cavity and looking for abnormalities.
  • the camera provides the medical professional with a two-dimensional view from the distal end of the endoscope.
  • the endoscope To capture an image from a different angle or in a different portion, the endoscope must be repositioned or moved back and forth. Repositioning and movement of the endoscope prolongs the procedure and causes added discomfort, complications, and risks to the patient.
  • flexures, tissue folds and unusual geometries of the organ may prevent the endoscope's camera from viewing all areas of the organ.
  • the unseen area may cause a potentially malignant (cancerous) polyp to be missed.
  • auxiliary camera which presents an image of the areas not viewable by the endoscope's main camera.
  • the auxiliary camera can be oriented backwards to face the main camera.
  • This arrangement of cameras can provide both front and rear views of an area or an abnormality.
  • polypectomy where a polyp is excised by placing a wire loop around the base of the polyp, the camera arrangement allows better placement of the wire loop to minimize damage to the adjacent healthy tissue.
  • an endoscope includes an insertion tube that has a distal end, and an imaging device that includes a steerable extension with a distal end and a proximal end. The proximal end of the extension is attached to the distal end of the insertion tube.
  • the distal end of the steerable extension may be steered in various manners.
  • the distal end of the steerable extension may be steered in one direction up to 180°.
  • the distal end of the steerable extension may be steered up to 180° in any one of two opposite directions.
  • the distal end of the steerable extension is steered in three or more directions.
  • the steerable extension has a diameter that is approximately a third of the insertion tube's diameter.
  • the imaging device includes an imaging unit that is provided on the distal end of the steerable extension. Additionally or alternatively, the imaging unit may be provided on a cylindrical side surface of the distal end region of the steerable extension. Furthermore, two imaging units may be provided on the opposite sides of the distal end region of the steerable extension.
  • the steerable imaging device allows a physician to better locate the imaging device, resulting in a greater viewing field and allowing viewing of the areas behind folds and flexures.
  • the steerable imaging device is advantageous also because it allows a greater degree of movement due to its smaller diameter and greater flexibility as compared to an imaging device mounted on the distal end of the insertion tube.
  • an endoscope in accordance with another aspect of the invention, includes an insertion tube having a distal end region, and a rear-viewing imaging device that is at least partially disposed inside the distal end region.
  • the insertion tube may have a sheath with a window placed in front of the rear-viewing imaging device to allow the imaging device to "see" an object outside of the insertion tube.
  • the rear-viewing imaging device may protrude outside of the insertion tube so that a window is not needed.
  • the distal end region of the insertion tube may include a circular groove having a front-facing sidewall and a rear-facing sidewall.
  • the rear- facing sidewall has a window placed in front of the rear- viewing imaging device.
  • the rear-viewing imaging device may protrude outside of the rear-facing sidewall so that a window is not needed.
  • the groove of this embodiment provides the imaging device with a better field of view.
  • the distal end region of the insertion tube includes a circular protrusion having a front- facing side and a rear-facing side.
  • the rear- facing side of the protrusion has a window placed in front of the rear-viewing imaging device.
  • the rear-viewing imaging device protrudes outside of the rear- facing side of the protrusion so that a window is not needed.
  • the circular protrusion of this embodiment provides the imaging device with a better field of view.
  • the endoscope includes a plurality of rear-viewing imaging devices, wherein the image signals from the rear-viewing imaging devices are combined to provide a 360° rear view.
  • an endoscope in accordance with a still further aspect of the invention, includes an insertion tube having a distal end cap, an imaging device, and a link that couples the imaging device to the distal end cap of the insertion tube.
  • the imaging device may include a housing element, and the housing element, link and distal end cap may form a unitary unit.
  • the endoscope further comprises a main imaging device positioned on a distal end of the insertion tube, wherein the two imaging devices provide different views of the same area.
  • Figure 1 shows a perspective view of an endoscope according to one embodiment of the present invention.
  • Figure 2 shows a perspective cutaway view of the endoscope of Figure 1.
  • Figure 3 shows another perspective cutaway view of the endoscope of Figure 1.
  • Figure 4 shows an exploded perspective view of the endoscope of Figure 1.
  • Figure 5 shows a perspective view of a variation of the endoscope of Figure 1 with a forward-viewing imaging unit.
  • Figure 6 shows a perspective view of a mechanism for extending a secondary imaging device from, and retracting it into, an insertion tube.
  • Figure 7 shows a perspective view of an endoscope with rear-viewing imaging devices according to another embodiment of the present invention.
  • Figure 8 shows a perspective view of the endoscope of Figure 7 with windows for the rear-viewing imaging devices.
  • Figure 9 shows a perspective view of another endoscope with rear-viewing imaging devices.
  • Figure 10 shows a perspective view of the endoscope of Figure 9 with the rear- viewing imaging devices protruding through the endoscope's sheath.
  • Figure 11 shows a perspective view of a further endoscope with rear- viewing imaging devices.
  • Figure 12 shows a perspective view of the endoscope of Figure 10 with the rear- viewing imaging devices protruding through the rear-facing sidewall of a groove.
  • Figure 13 shows a perspective view of a still further endoscope with the rear- viewing imaging devices provided on the rear-facing side of a circular protrusion.
  • Figure 14 shows a perspective view of an endoscope with a steerable imaging device according to a further embodiment of the present invention.
  • Figure 15 shows a front perspective cutaway view of the endoscope of Figure 14.
  • Figure 16 shows an elevation view of the endoscope of Figure 14 showing the steerability of the steerable imaging device.
  • Figure 17 shows a rear perspective cutaway view of the endoscope of Figure 14.
  • Figure 18 shows a variation of the endoscope of Figure 14 with a side-facing imaging unit.
  • Figure 19 shows another variation of the endoscope of Figure 14 with two side- facing imaging units placed on the opposite sides of an extension.
  • Figure 1 illustrates a first exemplary endoscope 10 of the present invention.
  • This endoscope 10 can be used in a variety of medical procedures in which imaging of a body tissue, organ, cavity or lumen is required.
  • the types of procedures include, for example, anoscopy, arthroscopy, bronchoscopy, colonoscopy, cystoscopy, EGD, laparoscopy, and sigmoidoscopy.
  • the endoscope 10 of Figure 1 may include an insertion tube 12 having a main imaging device 26 at its distal end ( Figure 2), a control handle 14 connected to the insertion tube 12, and a secondary imaging device 30 positioned at the distal end of the endoscope 10.
  • the insertion tube 12 of the endoscope 10 may be detachable from the control handle 14 or may be integrally formed with the control handle 14.
  • the diameter, length and flexibility of the insertion tube 12 depend on the procedure for which the endoscope 10 is used.
  • the insertion tube 12 preferably has one or more longitudinal channels 22 through which an instrument can reach the body cavity to perform any desired procedures, such as to take samples of suspicious tissues or to perform other surgical procedures such as polypectomy.
  • the instruments may be, for example, a retractable needle for drug injection, hydraulically actuated scissors, clamps, grasping tools, electrocoagulation systems, ultrasound transducers, electrical sensors, heating elements, laser mechanisms and other ablation means.
  • one of the channels 22 can be used to supply a washing liquid such as water for washing.
  • a cap (not shown) may be included at the opening of the washing channel 22 to divert the washing liquid onto a lens of the main imaging device 26 for cleaning.
  • Another or the same channel 22 may be used to supply a gas, such as CO 2 or air into the organ.
  • the channels 22 may also be used to extract fluids or inject fluids, such as a drug in a liquid carrier, into the body.
  • Various biopsy, drug delivery, and other diagnostic and therapeutic devices may also be inserted via the channels 22 to perform specific functions.
  • the insertion tube 12 preferably is steerable or has a steerable distal end region 13 (Figure 1).
  • the length of the distal end region 13 may be any suitable fraction of the length of the insertion tube 12, such as one half, one third, one fourth, one sixth, one tenth, or one twentieth.
  • the insertion tube 12 may have control cables 18 ( Figure 2) for the manipulation of the insertion tube 12.
  • the control cables 18 are symmetrically positioned within the insertion tube 12 and extend along the length of the insertion tube 12.
  • the control cables 18 may be anchored at or near the distal end of the insertion tube 12.
  • Each of the control cables 18 may be a Bowden cable, which includes a wire contained in a flexible overlying hollow tube.
  • the wires of the Bowden cables are attached to controls (not shown) in the handle 14. Using the controls, the wires can be pulled to bend the distal end region 13 of the insertion tube 12 in a given direction.
  • the Bowden cables can be used to articulate the distal end region of the insertion tube 12 in different directions.
  • the main imaging device 26 at the distal end of the insertion tube 12 may include, for example, a lens, single chip sensor, multiple chip sensor or fiber optic implemented devices.
  • the main imaging device 26, in electrical communication with a processor and/or monitor, may provide still images or recorded or live video images.
  • the distal end of the insertion tube 12 may include one or more light sources 24, such as light emitting diodes (LEDs) or fiber optical delivery of light from an external light source.
  • the light sources 24 preferably are equidistant from the main imaging device 26 to provide even illumination.
  • Each light source 24, individually, can be turned on or off. The intensity of each light source 24 can be adjusted to achieve optimum imaging.
  • the circuits for the main imaging device 26 and light sources 24 may be incorporated into a printed circuit board (PCB) 27 ( Figure 3), which can be mounted on the proximal side of an end cap 29 of the insertion tube 12.
  • PCB printed circuit board
  • the insertion tube 12 may include a flexible ribbon coil 21 and a flexible sheath 23 that is used to protect the internal components of the insertion tube 12, such as the channels 22, wires and cables 25, from the environment of the body.
  • the end cap 29 of the insertion tube 12 seals the open end of the shield 23 to close the distal end of the insertion tube 12.
  • the end cap 29 includes an exit port for the channel 22 and peripheral metal posts or sockets (not shown) to which the wires of the control cables 18 are attached.
  • the control handle 14 may include one or more control knobs 16 that are attached to control cables 18 (Figure 2) for the manipulation of the insertion tube 12.
  • the rotation of the control knobs 16 pulls the control cables 18 and therefore moves or bends the distal end region 13 of the insertion tube 12 up and down and/or side to side.
  • a clutch or breaking component (not shown) may be included with the control knobs 16 to prevent the knobs 16 from being inadvertently rotated such that rotation can only be caused by application of a certain degree of torque to the control knobs 16.
  • the control handle 14 has one or more ports and/or valves 20 for controlling access to the channels 22 ( Figure 2) of the insertion tube 12.
  • the ports and/or valves 20 can be air or water valves, suction valves, instrumentation ports, and suction/instrumentation ports.
  • control handle 14 may include buttons for taking pictures with the main imaging device 26, the secondary imaging device 30, or both.
  • the proximal end of the control handle 14 may include an accessory outlet 28 (Figure 1) that provides fluid communication between the air, water and suction channels and the pumps and related accessories.
  • the same outlet or a different outlet can be used for electrical lines to light and imaging components at the distal end of the endoscope 10.
  • a link 36 is used to connect the secondary imaging device 30 to the end cap 29 of the insertion tube 12.
  • the link 36 is a generally elongated, flat, straight bar, although the link may be configured in any suitable manner.
  • the link may be curved and may have a circular or square cross-section.
  • the link may comprise one pole, as shown in Figure 2, or two or more poles to enhance support to the secondary imaging device 30.
  • the link may be made from a transparent material, and the transparent link may be a transparent tube connected to the circumferences of the secondary imaging device 30 and end cap 29.
  • the link 36 is suitably flexible to make it easier for the secondary imaging device 30 to negotiate and accommodate the flexures along the body cavity.
  • the secondary imaging device 30 has an imaging unit 42 and one or more light sources 44 such as LEDs, as shown in Figure 3.
  • the imaging unit 42 and light sources 44 are placed on the proximal end 46 of the secondary imaging device 30, although they may be placed at any suitable locations on the secondary imaging device 30, including on the distal end or side of the secondary imaging device 30 or both.
  • the imaging unit 42 faces backwards towards the main imaging device 26 and is oriented so that the imaging unit 42 and the main imaging device 26 can be used to provide different views of the same area.
  • the imaging unit 42 provides a retrograde view of the area, while the main imaging device 26 provides a front view of the area.
  • polarizer filters may be used with the imaging devices 26, 30 and light sources 24, 44.
  • the main imaging device 26 and its light sources 24 may be covered by a first set of polarizer filters of the same orientation.
  • the imaging unit 42 and light source 44 may be covered by a second set of polarizer filters orientated at 90° relative to the first set of polarizer filters.
  • only one of the imaging devices 26, 30 may be covered by a first polarizer filter, and only the opposing light source 24, 44 may be covered by a second polarizer filter orientated at 90° relative to the first polarizer filter.
  • the use of polarizer filters to reduce light interference is well known and will not be described in detail herein.
  • the imaging devices 26, 30 and their light sources 24, 44 may be turned on and off alternately to reduce or prevent light interference.
  • the imaging unit 42 and its light sources 44 are turned off.
  • the imaging unit 42 and its light sources 44 are turned on.
  • the imaging devices 26, 30 and their light sources 24, 44 are turned on and off at a sufficiently high frequency that eyes do not sense that the light sources are being turned on and off.
  • the secondary imaging device 30 preferably includes a housing 48a, 48b for accommodating the imaging unit 42 and light sources 44.
  • the housing 48a, 48b of the secondary imaging device 30 preferably includes first and second housing elements 48a, 48b.
  • the housing elements 48a, 48b preferably have features, such as pins and sockets, which allow the imaging unit 42 and light source 44 to be securely mounted within the housing elements 48a, 48b.
  • the housing elements 48a, 48b are sealingly attached to each other to maintain biocompatibility of the secondary imaging device 30 and prevent contaminants from entering the secondary imaging device 30.
  • the housing elements 48a, 48b may be sealingly attached to each other in any suitable manner, including ultrasonic or friction welding or adhesive bonding.
  • the housing 48a, 48b may include windows for the imaging unit 42 and light source 44, respectively.
  • each window is sealed with a thin clear cover that 'is attached to the housing 48a, 48b.
  • the windows may be the polarizer filters described previously.
  • the first housing element 48a, the link 36, and the end cap 29 form a unitary unit made by means of, for example, injection molding.
  • the second housing element 48b maybe separately formed by means of, for example, injection molding.
  • the molded units are fabricated from a biocompatible material such as a biocompatible plastic.
  • the housing elements 48a, 48b, the link 36, and the end cap 29 may be made as separate parts from the same material or different materials and then attached to one another.
  • the circuitry for the imaging unit 42 is formed on a PCB 54.
  • the circuitry for the light sources 44 may also be formed on the same PCB 54.
  • the PCB 54 may additionally include signal processing circuitry and power management circuitry, and can be attached to one of the housing elements 48a by means of, for example, adhesives or screws.
  • the imaging unit 42 may be an electronic device which converts light incident on photosensitive semiconductor elements into electrical signals. Such a device may detect either color or black-and-white image data. The signals from the device are digitized and used to reproduce the image that was incident on the device.
  • CCD Charge Coupled Devices
  • CMOS Complementary Metal Oxide Semiconductor
  • an endoscope 10 may include wires 55 that extend through the like 36, insertion tube 12, and control handle 14 and connect the secondary imaging device 30 to an external control box (not shown).
  • the wires 55 allow the secondary imaging device 30 to communicate with the external control box, including transmitting video signals to the external control box and receiving power and control signals from the external control box.
  • the image data acquired by the main and secondary imaging devices 26, 30 are transmitted to the external control box for processing. Once received by the external control box, the image signal is fed to a signal processing circuit which converts it to a video signal such as NTSC composite or RGB. This video signal is then sent to a suitable connector for output to a display device such as a monitor or television.
  • a display device such as a monitor or television.
  • the images from the main imaging device 26 and from the secondary imaging device 30 can be shown together on the same display device with a split screen.
  • the display device may also have a text display area which is used to display patient information or reference number, date, time and other information and also enter notes for still images taken. The text can be typed in by means of a keyboard connected to the control box.
  • the external control box may also be used as an interface to the patient records database.
  • EMR patient electronic medical records
  • the signal processing circuit can convert image and video data to a format suitable for filing in the patient EMR file such as images in .jpeg, tif, or .bmp format among others.
  • the processed signal can be transmitted to the medical professional's computer or the medical facilities server via a cable or dedicated wireless link.
  • a switch on the control panel can be used to enable this transmission.
  • the data can be stored with a unique identification for the patient in electronic memory provided in the control box itself.
  • the signal processing circuit can be utilized to convert the video and image data to be compatible with the electronic medical records system used by the medical professional.
  • the processing may include compression of the data.
  • a cable or a wireless link may be used to transmit the data to a computer.
  • the image and signal processing circuitry of the external control box includes one or multiple integrated circuits and memory as needed along with associated discrete components. This circuit allows the video signals to be processed for enhancing image quality, enabling still images to be extracted from the video and allow conversion of the video format to provide multiple output formats. These functions can be interfaced for access via the control panel.
  • the external control box may be used to adjust the parameters of the main and secondary imaging devices 26, 30, such as brightness, exposure time and mode settings. These parameters may be adjusted by writing digital commands to specific registers controlling the parameters. These registers can be addressed by their unique numbers and digital commands can be read from and written to these registers to change the parameters.
  • the control box is used to control these parameters by transmitting data commands to these registers.
  • the signal processing circuit on the secondary imaging device 30 receives and then decodes these signals into commands and feeds them to the image devices 26, 30 to adjust the various parameters.
  • the secondary imaging device 30 may additionally include a forward viewing imaging unit 70 and forward facing light sources 72, as shown in Figure 5. This forward viewing imaging unit 70 allows more effective navigation of the endoscope 10. Additionally, to allow an accessory to reach the area in front of the secondary imaging device 30, the secondary imaging device 30 may be configured so as not to obstruct one or more channels 22 of the insertion tube 12. For example, the secondary imaging device 30 may be made small enough so that it does not obstruct the channel 22 of the insertion tube 12. Alternatively, the secondary imaging device 30 may include a through hole (not shown) aligned with the channel 22 of the insertion tube 12. This through hole allows an accessory to reach the area in front of the secondary imaging device 30.
  • the secondary imaging device may have the two imaging units 42, 70, one on the proximal side of the secondary imaging device and the other on the distal side of the secondary imaging device, but the insertion tube 12 does not have the main imaging device 26.
  • the increased space on the distal end of the insertion tube 12 can be used to provide one or more additional channels.
  • the secondary imaging device 30 can be extended and retracted from the insertion tube 12.
  • the endoscope 10 may include a linear actuator 73 placed in an enclosure 75 and is connected to the link 36.
  • the linear actuator 73 can extend the link 36 from a hollow guide 77 and retract the link 36 into the hollow guide 77. This allows the physician to retract the secondary imaging device 30 when advancing the endoscope 10 through a difficult region of the body, and then extend the secondary imaging device 30 when the endoscope 10 reaches its destination. Additionally, the extension and retraction of the secondary imaging device adjusts the distance between the main and secondary imaging devices.
  • the power may be turned on first to activate the imaging devices 26, 30 and the light sources 24, 44.
  • the imaging devices 26, 30 begin transmitting captured images to the external control box.
  • the control box then processes the image signals and sends them to a display so that a medical professional can visualize the images in real time.
  • the main imaging device 26 provides a front view of an area
  • the secondary imaging device 30 provides a rear or retrograde view of the same area.
  • the endoscope 10 is inserted into a patient.
  • the medical professional can simultaneously visualize images from the main imaging device 26 and from the secondary imaging device 30. Lesions hidden from the main imaging device 26 behind folds and flexures can now be viewed by the medical professional from the images provided by the secondary imaging device 30.
  • the endoscope 10 is removed from the patient.
  • the external control box can be used to adjust the parameters of the imaging devices 26, 30 and light sources 24, 44 to achieve optimum image quality.
  • relevant video and image data may be recorded in the patient's electronic medical records (EMR) file.
  • EMR electronic medical records
  • one or more rear-viewing imaging devices may be mounted in or on the distal end region of the insertion tube to provide retrograde views.
  • Figures 7 and 8 illustrate an embodiment according to this aspect of the invention.
  • the endoscope 210 in addition to the main imaging device 226 and main light sources 224 ( Figure 8), the endoscope 210 also includes two rear-viewing imaging devices 230 mounted inside the distal end region of the insertion tube 212, although the endoscope 210 may include any number of rear-viewing imaging devices.
  • Each rear-viewing imaging device 230 includes an imaging unit 242 and a light source 244.
  • the sheath 223 of the insertion tube 212 may have a window 250 for each of the rear-viewing imaging devices 230 to "see" through.
  • each window 255 forms a portion of the cylindrical sheath 223 and may be dimensioned to maximize the field of view of the corresponding imaging device 230.
  • the imaging devices 230 are mounted on the proximal side of the insertion tube's end cap 229, although the rear-viewing imaging devices 230 may be mounted on any suitable structure of the insertion tube 212, such as shown in Figure 11.
  • Each of the rear-viewing imaging devices 230 is positioned to face a direction that is preferably within or equal to 90° from the longitudinal axis of the insertion tube 212, more preferably within or equal to 45° from the longitudinal axis of the insertion tube 212.
  • the direction that each rear-viewing imaging device 30 faces is optimized to provide the rear-viewing imaging device 30 with the largest field of view.
  • FIG. 9 illustrates an embodiment 310, in which the rear-viewing imaging devices 330 are mounted at a 90° angle from the longitudinal axis of the insertion tube 312.
  • Each imaging device 330 includes an imaging unit 342 and a light source 344.
  • Each rear-viewing imaging device 330 may be provided with a window, as shown in Figure 8, or they may protrude from the sheath 323 as shown in Figure 10.
  • the rear-viewing imaging device 330 may be mounted on the proximal side of the insertion tube's end cap 329, as shown in Figure 9, or on any suitable structure of the insertion tube 312, such as shown in Figure 11.
  • FIGS 11 and 12 illustrate additional embodiments 410, 510 according to this aspect of the invention.
  • an insertion tube 412, 512 has a circular groove 477, 577 with a front-facing sidewall 479, 579 and a rear-facing sidewall 481, 581.
  • the windows for the rear- viewing imaging devices 430 installed insdie the insertion tube 412 are provided on the rear-facing sidewall 481 of the groove 477.
  • the imaging units 542 protrude from the rear-facing sidewall 581 of the groove 577.
  • Figure 13 illustrates a further embodiment 610 according to this aspect of the invention.
  • the insertion tube 612 includes a circular protrusion 677 that has a front- facing side 679 and a rear- facing side 681.
  • imaging devices 630 are provided on the rear- facing side 681 of the circular protrusion 677. In general, however, imaging devices may also be provided on the distal end, front- facing side 679 of the circular protrusion 677.
  • the image data received from the rear-facing imaging devices may be combined to provide a 360° rear view. This may be accomplished by digitally combining or "stitching" the complementary images provided by individual rear-facing imaging devices into a single image. This may be done using hardware and/or software tools well known in the image processing industry.
  • the rear-facing imaging devices may be positioned so as to capture an entire 360° rear view with a certain amount of overlap between the fields of view of adjacent imaging devices.
  • An algorithm that is run on a computing device in the control box or connected to the control box may be used to compare the image data from adjacent imaging devices for matching image patterns, which indicate image overlaps. Then the overlaps are eliminated or reduced, and the images are combined to produce a single 360° rear image.
  • a number of display devices corresponding to the number of rear viewing imaging devices may be provided.
  • Each of the display devices may be used to display a distinct image from an imaging device.
  • the display devices may be arranged in order, so as to simulate a continuous 360° view.
  • an endoscope 710 as shown in Figure 14, includes an insertion tube 712, a control handle 714 connected to the insertion tube 712, and an imaging device 730 extending from the distal end of the insertion tube 712.
  • the insertion tube 712 of this embodiment may be similar to the insertion tube 12 shown in Figure 1.
  • the insertion tube 712 may be detachable from the control handle 714 or may be integrally formed with the control handle 714.
  • the insertion tube 712 preferably has a longitudinal channel 722 through which an instrument can reach the body cavity to perform any desired procedures.
  • the distal end region 713 of the insertion tube 712 is steerable ( Figure 14), and control cables 718 ( Figure 15) may be used to steer the distal end region 713.
  • the insertion tube 712 does not have a main imaging device at its distal end, although it may have such an imaging device in alternate embodiments.
  • the insertion tube 712 may include a flexible ribbon coil 721 and a flexible sheath 723 that is used to protect the internal components of the insertion tube 712 from the environment of the body.
  • An end cap 729 may be used to seal the open end of the shield 723 to close the distal end of the insertion tube 712.
  • the control handle 714 may include one or more control knobs 716 that are attached to control cables 718 ( Figure 15) for the manipulation of the insertion tube 12.
  • the rotation of the control knobs 716 pulls the control cables 718 and therefore moves or bends the distal end region 713 of the insertion tube 712 up and down and/or side to side.
  • the control handle 714 has one or more ports and/or valves 720.
  • the ports and/or valves 720 are in communication with their respective channels 722 ( Figure 15) of the insertion tube 712.
  • the ports and/or valves 720 can be air or water valves, suction valves, instrumentation ports, and suction/instrumentation ports.
  • the proximal end of the control handle 714 may include an accessory outlet 728 that provides fluid communication between the air, water and suction channels and the pumps and related accessories.
  • the same outlet or a different outlet can be used for electrical lines to light and imaging components at the distal end of the endoscope 10.
  • the imaging device 730 includes an extension 731 that extends from the distal end of the insertion tube 712, and one or more imaging units 750 and one or more light sources 752 that are mounted in the distal end region of the extension 731.
  • the extension 731 has a tubular configuration, and its diameter is approximately a third of the insertion tube's diameter. Similar to the insertion tube 712, the extension 731 may have a ribbon coil and a flexible sheath.
  • the electrical wires for the imaging unit 750 and light source 752 may be routed through a channel 725 in the extension 731.
  • the imaging unit 750 may be a wireless unit as described in United States Patent Application No. 11/609,838.
  • the distal end region of the extension 731 is steerable to increase the areas accessible to the imaging unit 750.
  • the extension 731 may be steered in a manner similar to how the insertion tube 712 is steered, i.e. by using Bowden cables 733.
  • the first ends of the Bowden cables 733 may be attached to the proximal end of the extension's end cap 735, and the second ends may be attached to controls 716 on the handle 714 ( Figure 14). Accordingly, the handle 714 has two sets of controls 716 to articulate the distal end regions of the insertion tube 12 and extension 731.
  • the distal end region of the extension 731 may be steered up to 45°, 60°, 90°, 120°, 150°, or preferably 180° as shown in Figure 16.
  • the distal end region of the extension 731 may be steered in the direction of the channel 722 of the insertion tube 712 or in the direction of the axis of the insertion tube 712, and it may also be steered in the opposite direction.
  • the distal end region of the extension 731 may be steered up to 180° in one direction and up to 180° in the opposite direction.
  • the distal end region may be steered in any number of directions, such as in only one direction or in three or more directions.
  • the imaging unit 750 may have an image sensor (not shown) and a lens assembly (not shown) with associated circuitry which is integrated on a PCB 754. As shown in Figure 17, this PCB 754 preferably is attached to the proximal side of the extension's end cap 735. Data output, control and power lines for the imaging unit 750 can be fed to the proximal end of the endoscope 710 to be interfaced via the handle 714 to the control box. Any additional processing of the signals may be done in the control box and finally fed to a display device.
  • the lens assembly comprising the lens or multiple lenses in a housing can be mounted directly onto the PCB 754 such that it overlies the image sensor and focuses the light entering the lens system onto the photosensitive area of the image sensor.
  • the imaging units 750 and light sources 752 may be placed at any suitable location or locations in the distal end region of the extension 731.
  • an imaging unit 750 and a light source 752 are placed on the distal end of the extension 731.
  • an imaging unit 750 and a light source 752 may be placed on a side of the distal end region of the extension 731.
  • imaging units 750 and light sources 752 may additionally or alternatively be placed on two opposite sides of the distal end region of the extension 731.
  • both the extension 731 and the distal end region of the insertion tube 712 are steerable 180° in two directions. Consequently, the physician can better locate both the imaging unit 750 and the distal end of the insertion tube 712, resulting in a greater viewing field and allowing viewing of the areas behind folds and flexures.
  • the steerable extension 731 is advantageous because it allows a greater degree of movement due to its smaller diameter and greater flexibility as compared to the distal end region of the insertion tube 712.

Abstract

An endoscope includes an insertion tube having a distal end and an imaging device with a steerable extension. The proximal end of the extension is attached to the distal end of the insertion tube. An endoscope includes an insertion tube having a distal end region and a rear-viewing imaging device at least partially disposed inside the distal end region. An endoscope includes an insertion tube having a distal end cap, an imaging device, and a link that couples the imaging device to the distal end cap of the insertion tube.

Description

ENDOSCOPE
This application claims the benefit of United States Provisional Patent Application No. 60/761,475, filed January 23, 2006, the entire disclosure of which is incorporated herein by reference.
This application additionally claims the benefit of United States Provisional Patent Application No. 60/802,056, filed May 19, 2006, the entire disclosure of which is incorporated herein by reference.
This application further claims the benefit of United States Patent Application No. 11/609,838, filed December 12, 2006, the entire disclosure of which is incorporated herein by reference.
The entire disclosure of United States Patent Application No. 11/609,660, filed August 29, 2005, is incorporated herein by reference.
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an endoscope.
BACKGROUND OF THE INVENTION
An endoscope is a medical device comprising a flexible tube and a camera mounted on the distal end of the tube. The endoscope is insertable into an internal body cavity through a body orifice to examine the body cavity and tissues for diagnosis. The tube of the endoscope has one or more longitudinal channels, through which an instrument can reach the body cavity to take samples of suspicious tissues or to perform other surgical procedures such as polypectomy.
There are many types of endoscopes, and they are named in relation to the organs or areas with which they are used. For example, gastroscopes are used for examination and treatment of the esophagus, stomach and duodenum; colonoscopes for the colon; bronchoscopes for the bronchi; laparoscopes for the peritoneal cavity; sigmoidoscopes for the rectum and the sigmoid colon; arthroscopes for joints; cystoscopes for the urinary bladder; and angioscopes for the examination of blood vessels.
Each endoscope has a single forward viewing camera mounted at the distal end of the endoscope to transmit an image to an eyepiece or video display at the proximal end. The camera is used to assist a medical professional in advancing the endoscope into a body cavity and looking for abnormalities. The camera provides the medical professional with a two-dimensional view from the distal end of the endoscope. To capture an image from a different angle or in a different portion, the endoscope must be repositioned or moved back and forth. Repositioning and movement of the endoscope prolongs the procedure and causes added discomfort, complications, and risks to the patient. Additionally, in an environment such as the lower gastro-intestinal tract, flexures, tissue folds and unusual geometries of the organ may prevent the endoscope's camera from viewing all areas of the organ. The unseen area may cause a potentially malignant (cancerous) polyp to be missed.
This problem can be overcome by providing an auxiliary camera, which presents an image of the areas not viewable by the endoscope's main camera. The auxiliary camera can be oriented backwards to face the main camera. This arrangement of cameras can provide both front and rear views of an area or an abnormality. In the case of polypectomy where a polyp is excised by placing a wire loop around the base of the polyp, the camera arrangement allows better placement of the wire loop to minimize damage to the adjacent healthy tissue.
SUMMARY OF THE INVENTION
The present invention provides endoscopes that have various advantages over the prior art. According to one aspect of the present invention, an endoscope includes an insertion tube that has a distal end, and an imaging device that includes a steerable extension with a distal end and a proximal end. The proximal end of the extension is attached to the distal end of the insertion tube.
The distal end of the steerable extension may be steered in various manners. For example, the distal end of the steerable extension may be steered in one direction up to 180°. Alternatively, the distal end of the steerable extension may be steered up to 180° in any one of two opposite directions. In some cases, the distal end of the steerable extension is steered in three or more directions.
Tn a preferred embodiment, the steerable extension has a diameter that is approximately a third of the insertion tube's diameter.
In another preferred embodiment, the imaging device includes an imaging unit that is provided on the distal end of the steerable extension. Additionally or alternatively, the imaging unit may be provided on a cylindrical side surface of the distal end region of the steerable extension. Furthermore, two imaging units may be provided on the opposite sides of the distal end region of the steerable extension.
The steerable imaging device according to this aspect of the invention allows a physician to better locate the imaging device, resulting in a greater viewing field and allowing viewing of the areas behind folds and flexures. The steerable imaging device is advantageous also because it allows a greater degree of movement due to its smaller diameter and greater flexibility as compared to an imaging device mounted on the distal end of the insertion tube.
In accordance with another aspect of the invention, an endoscope includes an insertion tube having a distal end region, and a rear-viewing imaging device that is at least partially disposed inside the distal end region. The insertion tube may have a sheath with a window placed in front of the rear-viewing imaging device to allow the imaging device to "see" an object outside of the insertion tube. Alternatively, the rear-viewing imaging device may protrude outside of the insertion tube so that a window is not needed.
In a preferred embodiment, the distal end region of the insertion tube may include a circular groove having a front-facing sidewall and a rear-facing sidewall. The rear- facing sidewall has a window placed in front of the rear- viewing imaging device. Alternatively, the rear-viewing imaging device may protrude outside of the rear-facing sidewall so that a window is not needed. The groove of this embodiment provides the imaging device with a better field of view.
In another preferred embodiment, the distal end region of the insertion tube includes a circular protrusion having a front- facing side and a rear-facing side. The rear- facing side of the protrusion has a window placed in front of the rear-viewing imaging device. Alternatively, the rear-viewing imaging device protrudes outside of the rear- facing side of the protrusion so that a window is not needed. The circular protrusion of this embodiment provides the imaging device with a better field of view. In a further embodiment of the invention, the endoscope includes a plurality of rear-viewing imaging devices, wherein the image signals from the rear-viewing imaging devices are combined to provide a 360° rear view.
In accordance with a still further aspect of the invention, an endoscope includes an insertion tube having a distal end cap, an imaging device, and a link that couples the imaging device to the distal end cap of the insertion tube. The imaging device may include a housing element, and the housing element, link and distal end cap may form a unitary unit. In a preferred embodiment, the endoscope further comprises a main imaging device positioned on a distal end of the insertion tube, wherein the two imaging devices provide different views of the same area.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows a perspective view of an endoscope according to one embodiment of the present invention.
Figure 2 shows a perspective cutaway view of the endoscope of Figure 1.
Figure 3 shows another perspective cutaway view of the endoscope of Figure 1.
Figure 4 shows an exploded perspective view of the endoscope of Figure 1.
Figure 5 shows a perspective view of a variation of the endoscope of Figure 1 with a forward-viewing imaging unit.
Figure 6 shows a perspective view of a mechanism for extending a secondary imaging device from, and retracting it into, an insertion tube.
Figure 7 shows a perspective view of an endoscope with rear-viewing imaging devices according to another embodiment of the present invention.
Figure 8 shows a perspective view of the endoscope of Figure 7 with windows for the rear-viewing imaging devices.
Figure 9 shows a perspective view of another endoscope with rear-viewing imaging devices.
Figure 10 shows a perspective view of the endoscope of Figure 9 with the rear- viewing imaging devices protruding through the endoscope's sheath.
Figure 11 shows a perspective view of a further endoscope with rear- viewing imaging devices.
Figure 12 shows a perspective view of the endoscope of Figure 10 with the rear- viewing imaging devices protruding through the rear-facing sidewall of a groove.
Figure 13 shows a perspective view of a still further endoscope with the rear- viewing imaging devices provided on the rear-facing side of a circular protrusion.
Figure 14 shows a perspective view of an endoscope with a steerable imaging device according to a further embodiment of the present invention.
Figure 15 shows a front perspective cutaway view of the endoscope of Figure 14.
Figure 16 shows an elevation view of the endoscope of Figure 14 showing the steerability of the steerable imaging device.
Figure 17 shows a rear perspective cutaway view of the endoscope of Figure 14.
Figure 18 shows a variation of the endoscope of Figure 14 with a side-facing imaging unit.
Figure 19 shows another variation of the endoscope of Figure 14 with two side- facing imaging units placed on the opposite sides of an extension.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
Figure 1 illustrates a first exemplary endoscope 10 of the present invention. This endoscope 10 can be used in a variety of medical procedures in which imaging of a body tissue, organ, cavity or lumen is required. The types of procedures include, for example, anoscopy, arthroscopy, bronchoscopy, colonoscopy, cystoscopy, EGD, laparoscopy, and sigmoidoscopy.
The endoscope 10 of Figure 1 may include an insertion tube 12 having a main imaging device 26 at its distal end (Figure 2), a control handle 14 connected to the insertion tube 12, and a secondary imaging device 30 positioned at the distal end of the endoscope 10.
The insertion tube 12 of the endoscope 10 may be detachable from the control handle 14 or may be integrally formed with the control handle 14. The diameter, length and flexibility of the insertion tube 12 depend on the procedure for which the endoscope 10 is used.
As shown in Figure 2, the insertion tube 12 preferably has one or more longitudinal channels 22 through which an instrument can reach the body cavity to perform any desired procedures, such as to take samples of suspicious tissues or to perform other surgical procedures such as polypectomy. The instruments may be, for example, a retractable needle for drug injection, hydraulically actuated scissors, clamps, grasping tools, electrocoagulation systems, ultrasound transducers, electrical sensors, heating elements, laser mechanisms and other ablation means. In some embodiments, one of the channels 22 can be used to supply a washing liquid such as water for washing. A cap (not shown) may be included at the opening of the washing channel 22 to divert the washing liquid onto a lens of the main imaging device 26 for cleaning. Another or the same channel 22 may be used to supply a gas, such as CO2 or air into the organ. The channels 22 may also be used to extract fluids or inject fluids, such as a drug in a liquid carrier, into the body. Various biopsy, drug delivery, and other diagnostic and therapeutic devices may also be inserted via the channels 22 to perform specific functions.
The insertion tube 12 preferably is steerable or has a steerable distal end region 13 (Figure 1). The length of the distal end region 13 may be any suitable fraction of the length of the insertion tube 12, such as one half, one third, one fourth, one sixth, one tenth, or one twentieth. The insertion tube 12 may have control cables 18 (Figure 2) for the manipulation of the insertion tube 12. Preferably, the control cables 18 are symmetrically positioned within the insertion tube 12 and extend along the length of the insertion tube 12. The control cables 18 may be anchored at or near the distal end of the insertion tube 12. Each of the control cables 18 may be a Bowden cable, which includes a wire contained in a flexible overlying hollow tube. The wires of the Bowden cables are attached to controls (not shown) in the handle 14. Using the controls, the wires can be pulled to bend the distal end region 13 of the insertion tube 12 in a given direction. The Bowden cables can be used to articulate the distal end region of the insertion tube 12 in different directions.
The main imaging device 26 at the distal end of the insertion tube 12 may include, for example, a lens, single chip sensor, multiple chip sensor or fiber optic implemented devices. The main imaging device 26, in electrical communication with a processor and/or monitor, may provide still images or recorded or live video images. In addition to the main imaging device 26, the distal end of the insertion tube 12 may include one or more light sources 24, such as light emitting diodes (LEDs) or fiber optical delivery of light from an external light source. The light sources 24 preferably are equidistant from the main imaging device 26 to provide even illumination. Each light source 24, individually, can be turned on or off. The intensity of each light source 24 can be adjusted to achieve optimum imaging. The circuits for the main imaging device 26 and light sources 24 may be incorporated into a printed circuit board (PCB) 27 (Figure 3), which can be mounted on the proximal side of an end cap 29 of the insertion tube 12.
As shown in Figure 2, the insertion tube 12 may include a flexible ribbon coil 21 and a flexible sheath 23 that is used to protect the internal components of the insertion tube 12, such as the channels 22, wires and cables 25, from the environment of the body. The end cap 29 of the insertion tube 12 seals the open end of the shield 23 to close the distal end of the insertion tube 12. The end cap 29 includes an exit port for the channel 22 and peripheral metal posts or sockets (not shown) to which the wires of the control cables 18 are attached.
As shown in Figure 1, the control handle 14 may include one or more control knobs 16 that are attached to control cables 18 (Figure 2) for the manipulation of the insertion tube 12. Preferably, the rotation of the control knobs 16 pulls the control cables 18 and therefore moves or bends the distal end region 13 of the insertion tube 12 up and down and/or side to side. In some embodiments, a clutch or breaking component (not shown) may be included with the control knobs 16 to prevent the knobs 16 from being inadvertently rotated such that rotation can only be caused by application of a certain degree of torque to the control knobs 16. Preferably, as shown in Figure 1, the control handle 14 has one or more ports and/or valves 20 for controlling access to the channels 22 (Figure 2) of the insertion tube 12. The ports and/or valves 20 can be air or water valves, suction valves, instrumentation ports, and suction/instrumentation ports.
Additionally, the control handle 14 may include buttons for taking pictures with the main imaging device 26, the secondary imaging device 30, or both.
The proximal end of the control handle 14 may include an accessory outlet 28 (Figure 1) that provides fluid communication between the air, water and suction channels and the pumps and related accessories. The same outlet or a different outlet can be used for electrical lines to light and imaging components at the distal end of the endoscope 10.
As illustrated in Figure 2, a link 36 is used to connect the secondary imaging device 30 to the end cap 29 of the insertion tube 12. In the illustrated embodiment, the link 36 is a generally elongated, flat, straight bar, although the link may be configured in any suitable manner. For example, the link may be curved and may have a circular or square cross-section. The link may comprise one pole, as shown in Figure 2, or two or more poles to enhance support to the secondary imaging device 30. In some embodiments, the link may be made from a transparent material, and the transparent link may be a transparent tube connected to the circumferences of the secondary imaging device 30 and end cap 29. Preferably, the link 36 is suitably flexible to make it easier for the secondary imaging device 30 to negotiate and accommodate the flexures along the body cavity.
Preferably, the secondary imaging device 30 has an imaging unit 42 and one or more light sources 44 such as LEDs, as shown in Figure 3. In this embodiment, the imaging unit 42 and light sources 44 are placed on the proximal end 46 of the secondary imaging device 30, although they may be placed at any suitable locations on the secondary imaging device 30, including on the distal end or side of the secondary imaging device 30 or both. Preferably, the imaging unit 42 faces backwards towards the main imaging device 26 and is oriented so that the imaging unit 42 and the main imaging device 26 can be used to provide different views of the same area. In the illustrated embodiment, the imaging unit 42 provides a retrograde view of the area, while the main imaging device 26 provides a front view of the area.
Since the main imaging device 26 and the imaging unit 42 of the secondary imaging device 30 face each other, the light sources 24, 44 of one imaging device 26, 30 may interfere with the other imaging device 30, 26. To reduce the interference, polarizer filters may be used with the imaging devices 26, 30 and light sources 24, 44. The main imaging device 26 and its light sources 24 may be covered by a first set of polarizer filters of the same orientation. And the imaging unit 42 and light source 44 may be covered by a second set of polarizer filters orientated at 90° relative to the first set of polarizer filters. Alternatively, only one of the imaging devices 26, 30 may be covered by a first polarizer filter, and only the opposing light source 24, 44 may be covered by a second polarizer filter orientated at 90° relative to the first polarizer filter. The use of polarizer filters to reduce light interference is well known and will not be described in detail herein.
As an alternative to polarizer filters, the imaging devices 26, 30 and their light sources 24, 44 may be turned on and off alternately to reduce or prevent light interference. In other words, when the main imaging device 26 and its light sources 24 are turned on, the imaging unit 42 and its light sources 44 are turned off. And when the main imaging device 26 and its light sources 24 are turned off, the imaging unit 42 and its light sources 44 are turned on. Preferably, the imaging devices 26, 30 and their light sources 24, 44 are turned on and off at a sufficiently high frequency that eyes do not sense that the light sources are being turned on and off.
As shown in Figure 4, the secondary imaging device 30 preferably includes a housing 48a, 48b for accommodating the imaging unit 42 and light sources 44. The housing 48a, 48b of the secondary imaging device 30 preferably includes first and second housing elements 48a, 48b. The housing elements 48a, 48b preferably have features, such as pins and sockets, which allow the imaging unit 42 and light source 44 to be securely mounted within the housing elements 48a, 48b. The housing elements 48a, 48b are sealingly attached to each other to maintain biocompatibility of the secondary imaging device 30 and prevent contaminants from entering the secondary imaging device 30. The housing elements 48a, 48b may be sealingly attached to each other in any suitable manner, including ultrasonic or friction welding or adhesive bonding. The housing 48a, 48b may include windows for the imaging unit 42 and light source 44, respectively. Preferably, each window is sealed with a thin clear cover that 'is attached to the housing 48a, 48b. In some embodiments, the windows may be the polarizer filters described previously.
In a preferred embodiment, the first housing element 48a, the link 36, and the end cap 29 form a unitary unit made by means of, for example, injection molding. The second housing element 48b maybe separately formed by means of, for example, injection molding. Preferably, the molded units are fabricated from a biocompatible material such as a biocompatible plastic. Alternatively, the housing elements 48a, 48b, the link 36, and the end cap 29 may be made as separate parts from the same material or different materials and then attached to one another.
As shown in Figure 4, the circuitry for the imaging unit 42 is formed on a PCB 54.
The circuitry for the light sources 44 may also be formed on the same PCB 54. The PCB 54 may additionally include signal processing circuitry and power management circuitry, and can be attached to one of the housing elements 48a by means of, for example, adhesives or screws. The imaging unit 42 may be an electronic device which converts light incident on photosensitive semiconductor elements into electrical signals. Such a device may detect either color or black-and-white image data. The signals from the device are digitized and used to reproduce the image that was incident on the device. Two commonly used types of imaging devices are Charge Coupled Devices (CCD) such as LC 99268 FB produced by Sanyo of Osaka, Japan and Complementary Metal Oxide Semiconductor (CMOS) camera chips such as the OVT 6910 produced by OmniVision of Sunnyvale, California.
As shown in Figures 2-4, an endoscope 10 may include wires 55 that extend through the like 36, insertion tube 12, and control handle 14 and connect the secondary imaging device 30 to an external control box (not shown). The wires 55 allow the secondary imaging device 30 to communicate with the external control box, including transmitting video signals to the external control box and receiving power and control signals from the external control box.
The image data acquired by the main and secondary imaging devices 26, 30 are transmitted to the external control box for processing. Once received by the external control box, the image signal is fed to a signal processing circuit which converts it to a video signal such as NTSC composite or RGB. This video signal is then sent to a suitable connector for output to a display device such as a monitor or television. In some embodiments, the images from the main imaging device 26 and from the secondary imaging device 30 can be shown together on the same display device with a split screen. The display device may also have a text display area which is used to display patient information or reference number, date, time and other information and also enter notes for still images taken. The text can be typed in by means of a keyboard connected to the control box.
The external control box may also be used as an interface to the patient records database. A large number of medical facilities now make use of electronic medical records. During the procedure relevant video and image data may need to be recorded in the patient electronic medical records (EMR) file. The signal processing circuit can convert image and video data to a format suitable for filing in the patient EMR file such as images in .jpeg, tif, or .bmp format among others. The processed signal can be transmitted to the medical professional's computer or the medical facilities server via a cable or dedicated wireless link. A switch on the control panel can be used to enable this transmission. Alternatively the data can be stored with a unique identification for the patient in electronic memory provided in the control box itself. The signal processing circuit can be utilized to convert the video and image data to be compatible with the electronic medical records system used by the medical professional. The processing may include compression of the data. A cable or a wireless link may be used to transmit the data to a computer.
The image and signal processing circuitry of the external control box includes one or multiple integrated circuits and memory as needed along with associated discrete components. This circuit allows the video signals to be processed for enhancing image quality, enabling still images to be extracted from the video and allow conversion of the video format to provide multiple output formats. These functions can be interfaced for access via the control panel. The external control box may be used to adjust the parameters of the main and secondary imaging devices 26, 30, such as brightness, exposure time and mode settings. These parameters may be adjusted by writing digital commands to specific registers controlling the parameters. These registers can be addressed by their unique numbers and digital commands can be read from and written to these registers to change the parameters. The control box is used to control these parameters by transmitting data commands to these registers. The signal processing circuit on the secondary imaging device 30 receives and then decodes these signals into commands and feeds them to the image devices 26, 30 to adjust the various parameters.
The secondary imaging device 30 may additionally include a forward viewing imaging unit 70 and forward facing light sources 72, as shown in Figure 5. This forward viewing imaging unit 70 allows more effective navigation of the endoscope 10. Additionally, to allow an accessory to reach the area in front of the secondary imaging device 30, the secondary imaging device 30 may be configured so as not to obstruct one or more channels 22 of the insertion tube 12. For example, the secondary imaging device 30 may be made small enough so that it does not obstruct the channel 22 of the insertion tube 12. Alternatively, the secondary imaging device 30 may include a through hole (not shown) aligned with the channel 22 of the insertion tube 12. This through hole allows an accessory to reach the area in front of the secondary imaging device 30.
In accordance with further embodiments of the present invention, the secondary imaging device may have the two imaging units 42, 70, one on the proximal side of the secondary imaging device and the other on the distal side of the secondary imaging device, but the insertion tube 12 does not have the main imaging device 26. The increased space on the distal end of the insertion tube 12 can be used to provide one or more additional channels.
In another embodiment, the secondary imaging device 30 can be extended and retracted from the insertion tube 12. As shown in Figure 6, the endoscope 10 may include a linear actuator 73 placed in an enclosure 75 and is connected to the link 36. The linear actuator 73 can extend the link 36 from a hollow guide 77 and retract the link 36 into the hollow guide 77. This allows the physician to retract the secondary imaging device 30 when advancing the endoscope 10 through a difficult region of the body, and then extend the secondary imaging device 30 when the endoscope 10 reaches its destination. Additionally, the extension and retraction of the secondary imaging device adjusts the distance between the main and secondary imaging devices.
In operation, the power may be turned on first to activate the imaging devices 26, 30 and the light sources 24, 44. At this point, the imaging devices 26, 30 begin transmitting captured images to the external control box. The control box then processes the image signals and sends them to a display so that a medical professional can visualize the images in real time. At this point, the main imaging device 26 provides a front view of an area, while the secondary imaging device 30 provides a rear or retrograde view of the same area. During the medical procedure, the endoscope 10 is inserted into a patient. The medical professional can simultaneously visualize images from the main imaging device 26 and from the secondary imaging device 30. Lesions hidden from the main imaging device 26 behind folds and flexures can now be viewed by the medical professional from the images provided by the secondary imaging device 30. When the procedure is complete, the endoscope 10 is removed from the patient.
The external control box can be used to adjust the parameters of the imaging devices 26, 30 and light sources 24, 44 to achieve optimum image quality. During the procedure, relevant video and image data may be recorded in the patient's electronic medical records (EMR) file.
In accordance with another aspect of the invention, one or more rear-viewing imaging devices may be mounted in or on the distal end region of the insertion tube to provide retrograde views. Figures 7 and 8 illustrate an embodiment according to this aspect of the invention. In this embodiment, in addition to the main imaging device 226 and main light sources 224 (Figure 8), the endoscope 210 also includes two rear-viewing imaging devices 230 mounted inside the distal end region of the insertion tube 212, although the endoscope 210 may include any number of rear-viewing imaging devices. Each rear-viewing imaging device 230 includes an imaging unit 242 and a light source 244. The sheath 223 of the insertion tube 212 may have a window 250 for each of the rear-viewing imaging devices 230 to "see" through. In this embodiment, each window 255 forms a portion of the cylindrical sheath 223 and may be dimensioned to maximize the field of view of the corresponding imaging device 230.
In this embodiment, the imaging devices 230 are mounted on the proximal side of the insertion tube's end cap 229, although the rear-viewing imaging devices 230 may be mounted on any suitable structure of the insertion tube 212, such as shown in Figure 11. Each of the rear-viewing imaging devices 230 is positioned to face a direction that is preferably within or equal to 90° from the longitudinal axis of the insertion tube 212, more preferably within or equal to 45° from the longitudinal axis of the insertion tube 212. Preferably, the direction that each rear-viewing imaging device 30 faces is optimized to provide the rear-viewing imaging device 30 with the largest field of view.
In addition to the embodiment shown in Figures 7 and 8, this aspect of the invention may have additional variations. For example, Figure 9 illustrates an embodiment 310, in which the rear-viewing imaging devices 330 are mounted at a 90° angle from the longitudinal axis of the insertion tube 312. Each imaging device 330 includes an imaging unit 342 and a light source 344. Each rear-viewing imaging device 330 may be provided with a window, as shown in Figure 8, or they may protrude from the sheath 323 as shown in Figure 10. The rear-viewing imaging device 330 may be mounted on the proximal side of the insertion tube's end cap 329, as shown in Figure 9, or on any suitable structure of the insertion tube 312, such as shown in Figure 11.
Figures 11 and 12 illustrate additional embodiments 410, 510 according to this aspect of the invention. In each of these embodiments 410, 510, an insertion tube 412, 512 has a circular groove 477, 577 with a front-facing sidewall 479, 579 and a rear-facing sidewall 481, 581. In the embodiment 410 shown in Figure 11, the windows for the rear- viewing imaging devices 430 installed insdie the insertion tube 412 are provided on the rear-facing sidewall 481 of the groove 477. In the embodiment 510 shown in Figure 12, the imaging units 542 protrude from the rear-facing sidewall 581 of the groove 577.
Figure 13 illustrates a further embodiment 610 according to this aspect of the invention. In this embodiment 610, the insertion tube 612 includes a circular protrusion 677 that has a front- facing side 679 and a rear- facing side 681. In this embodiment, imaging devices 630 are provided on the rear- facing side 681 of the circular protrusion 677. In general, however, imaging devices may also be provided on the distal end, front- facing side 679 of the circular protrusion 677.
The image data received from the rear-facing imaging devices may be combined to provide a 360° rear view. This may be accomplished by digitally combining or "stitching" the complementary images provided by individual rear-facing imaging devices into a single image. This may be done using hardware and/or software tools well known in the image processing industry. The rear-facing imaging devices may be positioned so as to capture an entire 360° rear view with a certain amount of overlap between the fields of view of adjacent imaging devices. An algorithm that is run on a computing device in the control box or connected to the control box may be used to compare the image data from adjacent imaging devices for matching image patterns, which indicate image overlaps. Then the overlaps are eliminated or reduced, and the images are combined to produce a single 360° rear image.
Alternatively, a number of display devices corresponding to the number of rear viewing imaging devices may be provided. Each of the display devices may be used to display a distinct image from an imaging device. The display devices may be arranged in order, so as to simulate a continuous 360° view.
In accordance with a further aspect of the invention, an endoscope 710, as shown in Figure 14, includes an insertion tube 712, a control handle 714 connected to the insertion tube 712, and an imaging device 730 extending from the distal end of the insertion tube 712.
The insertion tube 712 of this embodiment, as shown in Figure 15, may be similar to the insertion tube 12 shown in Figure 1. For example, the insertion tube 712 may be detachable from the control handle 714 or may be integrally formed with the control handle 714. The insertion tube 712 preferably has a longitudinal channel 722 through which an instrument can reach the body cavity to perform any desired procedures. Preferably, the distal end region 713 of the insertion tube 712 is steerable (Figure 14), and control cables 718 (Figure 15) may be used to steer the distal end region 713. In this embodiment, the insertion tube 712 does not have a main imaging device at its distal end, although it may have such an imaging device in alternate embodiments. The insertion tube 712 may include a flexible ribbon coil 721 and a flexible sheath 723 that is used to protect the internal components of the insertion tube 712 from the environment of the body. An end cap 729 may be used to seal the open end of the shield 723 to close the distal end of the insertion tube 712.
As shown in Figure 14, the control handle 714 may include one or more control knobs 716 that are attached to control cables 718 (Figure 15) for the manipulation of the insertion tube 12. Preferably, the rotation of the control knobs 716 pulls the control cables 718 and therefore moves or bends the distal end region 713 of the insertion tube 712 up and down and/or side to side. Preferably, as shown in Figure 14, the control handle 714 has one or more ports and/or valves 720. The ports and/or valves 720 are in communication with their respective channels 722 (Figure 15) of the insertion tube 712. The ports and/or valves 720 can be air or water valves, suction valves, instrumentation ports, and suction/instrumentation ports. The proximal end of the control handle 714 may include an accessory outlet 728 that provides fluid communication between the air, water and suction channels and the pumps and related accessories. The same outlet or a different outlet can be used for electrical lines to light and imaging components at the distal end of the endoscope 10.
The imaging device 730 includes an extension 731 that extends from the distal end of the insertion tube 712, and one or more imaging units 750 and one or more light sources 752 that are mounted in the distal end region of the extension 731. In the illustrated embodiment, the extension 731 has a tubular configuration, and its diameter is approximately a third of the insertion tube's diameter. Similar to the insertion tube 712, the extension 731 may have a ribbon coil and a flexible sheath. The electrical wires for the imaging unit 750 and light source 752 may be routed through a channel 725 in the extension 731. Alternatively, the imaging unit 750 may be a wireless unit as described in United States Patent Application No. 11/609,838.
In this embodiment, at least the distal end region of the extension 731 is steerable to increase the areas accessible to the imaging unit 750. The extension 731 may be steered in a manner similar to how the insertion tube 712 is steered, i.e. by using Bowden cables 733. The first ends of the Bowden cables 733 may be attached to the proximal end of the extension's end cap 735, and the second ends may be attached to controls 716 on the handle 714 (Figure 14). Accordingly, the handle 714 has two sets of controls 716 to articulate the distal end regions of the insertion tube 12 and extension 731.
The distal end region of the extension 731 may be steered up to 45°, 60°, 90°, 120°, 150°, or preferably 180° as shown in Figure 16. The distal end region of the extension 731 may be steered in the direction of the channel 722 of the insertion tube 712 or in the direction of the axis of the insertion tube 712, and it may also be steered in the opposite direction. In other words, the distal end region of the extension 731 may be steered up to 180° in one direction and up to 180° in the opposite direction. In general, the distal end region may be steered in any number of directions, such as in only one direction or in three or more directions.
The imaging unit 750 may have an image sensor (not shown) and a lens assembly (not shown) with associated circuitry which is integrated on a PCB 754. As shown in Figure 17, this PCB 754 preferably is attached to the proximal side of the extension's end cap 735. Data output, control and power lines for the imaging unit 750 can be fed to the proximal end of the endoscope 710 to be interfaced via the handle 714 to the control box. Any additional processing of the signals may be done in the control box and finally fed to a display device. The lens assembly comprising the lens or multiple lenses in a housing can be mounted directly onto the PCB 754 such that it overlies the image sensor and focuses the light entering the lens system onto the photosensitive area of the image sensor.
The imaging units 750 and light sources 752 may be placed at any suitable location or locations in the distal end region of the extension 731. For example, as shown in Figure 15, an imaging unit 750 and a light source 752 are placed on the distal end of the extension 731. Additionally or alternatively, as shown in Figure 18, an imaging unit 750 and a light source 752 may be placed on a side of the distal end region of the extension 731. Furthermore, as shown in Figure 19, imaging units 750 and light sources 752 may additionally or alternatively be placed on two opposite sides of the distal end region of the extension 731.
According to this aspect of the invention, both the extension 731 and the distal end region of the insertion tube 712 are steerable 180° in two directions. Consequently, the physician can better locate both the imaging unit 750 and the distal end of the insertion tube 712, resulting in a greater viewing field and allowing viewing of the areas behind folds and flexures. The steerable extension 731 is advantageous because it allows a greater degree of movement due to its smaller diameter and greater flexibility as compared to the distal end region of the insertion tube 712.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims

CLAIMS:
1. An endoscope comprising: an insertion tube having a distal end; and an imaging device including a steerable extension having a distal end and a proximal end, wherein the proximal end of the extension is attached to the distal end of the insertion tube.
2. The endoscope of claim I, wherein the distal end of the steerable extension is steerable in one direction up to 180°.
3. The endoscope of claim 1, wherein the distal end of the steerable extension is steerable in two opposite directions.
4. The endoscope of claim 3, wherein the distal end of the steerable extension is steerable up to 180° in each of the two opposite directions.
5. The endoscope of claim 1, wherein the distal end of the steerable extension is steerable in three or more directions.
6. The endoscope of claim 1, wherein the steerable extension has a diameter that is approximately a third of the insertion tube's diameter.
7. The endoscope of claim 1, wherein the distal end of the insertion tube is steerable.
8. The endoscope of claim 1 , wherein the imaging device includes an imaging unit that is provided on the distal end of the steerable extension.
9. The endoscope of claim I5 wherein the imaging device includes an imaging unit that is provided on a side surface of the distal end region of the steerable extension.
10. The endoscope of claim 1, wherein the imaging device includes two imaging units that are provided on the opposite sides of the distal end region of the steerable extension.
1 1. An endoscope comprising: an insertion tube having a distal end region; and a rear-viewing imaging device at least partially disposed inside the distal end region.
12. The endoscope of claim 11, wherein the insertion tube includes a sheath having a window placed in front of the rear-viewing imaging device.
13. The endoscope of claim 11, wherein the rear-viewing imaging device protrudes outside of the insertion tube.
14. The endoscope of claim 11 , wherein the distal end region of the insertion tube includes a circular groove having a front-facing sidewall and rear-facing sidewall.
15. The endoscope of claim 14, wherein the rear-facing sidewall has a rear- viewing imaging device.
16. The endoscope of claim 14, wherein the rear-viewing imaging device protrudes outside of the rear- facing sidewall.
17. The endoscope of claim 11, wherein the distal end region of the insertion tube includes a circular protrusion having a front- facing side and rear- facing side.
18. The endoscope of claim 17, wherein the rear- facing side of the protrusion has a window placed in front of the rear-viewing imaging device.
19. The endoscope of claim 17, wherein the rear-viewing imaging device protrudes outside of the rear-facing side of the protrusion.
20. The endoscope of claim 11, further comprising a plurality of rear-viewing imaging devices, wherein imaging signals from the rear-viewing imaging devices are combined to provide an integrated rear view.
21. The endoscope of claim 20, wherein the integrated rear view is a 360° view.
22. An endoscope comprising: an insertion tube having a distal end region; a plurality of imaging elements, wherein at least one of the imaging elements is positioned on the distal end of the insertion tube, and wherein at least one of the imaging elements is positioned in the distal end region of the insertion tube behind (proximally) to the first imaging element on the distal region of the insertion tube
23. The endoscope of claim 22, wherein images from the imaging sensors are provided on a display device for simultaneous viewing
24. A method of viewing a lumen of the body comprising providing simultaneous viewing of images from front and rear viewing imaging elements attached to a single insertion tube.
25. An endoscope comprising: an insertion tube; a main imaging device positioned on a distal end of the insertion tube; a secondary imaging device; and an actuator, wherein the actuator extends the secondary imaging device out of, and retracts the secondary imaging device into, the insertion tube, and wherein the extension and retraction of the secondary imaging device adjusts the distance between the main and secondary imaging devices.
26. An endoscope comprising: an insertion tube having a distal end cap; an imaging device; and a link that couples the imaging device to the distal end cap of the insertion tube, wherein the imaging device includes a housing element, and wherein the housing element, link and distal end cap form a unitary unit.
27. An endoscope comprising: an insertion tube having a distal end cap; a main imaging device positioned on a distal end of the insertion tube; a secondary imaging device; and a link that couples the secondary imaging device to the distal end cap of the insertion tube, wherein the main and secondary imaging devices provide different views of the same area.
28. An endoscope comprising: an insertion tube having a distal end cap; a main imaging device including a main light source, the main imaging device being positioned on a distal end of the insertion tube; a secondary imaging device including a secondary light source; and a link that couples the secondary imaging device to the distal end cap of the insertion tube, wherein the main and secondary imaging devices and their light sources are turned on and off alternately to reduce or eliminate light interference.
29. The endoscope of claim 28, wherein the main and secondary imaging devices and their light sources are turned on and off at a sufficiently high frequency such that eyes do not sense that the main and secondary imaging devices and their light sources are intermittently turned on and off.
30. An endoscope comprising: an insertion tube having a distal end cap; a main imaging device including a main light source, the main imaging device being positioned on a distal end of the insertion tube; a secondary imaging device including a secondary light source; and a link that couples the secondary imaging device to the distal end cap of the insertion tube, wherein the main imaging device and main light source are covered by a first set of polarizer filters of the same orientation, and wherein the secondary imaging device and secondary light source are covered by a second set of polarizer filters orientated at 90° relative to the first set of polarizer filters.
31. An endoscope comprising: an insertion tube having a distal end cap; a main imaging device including a main light source, the main imaging device being positioned on a distal end of the insertion tube; a secondary imaging device including a secondary light source; and a link that couples the secondary imaging device to the distal end cap of the insertion tube, wherein only one of the imaging devices is covered by a first polarizer filter, and only the other light source is covered by a second polarizer filter orientated at 90c relative to the first polarizer filter.
EP07717024A 2006-01-23 2007-01-23 Endoscope Withdrawn EP1986541A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US76147506P 2006-01-23 2006-01-23
US80205606P 2006-05-19 2006-05-19
US11/609,838 US8182422B2 (en) 2005-12-13 2006-12-12 Endoscope having detachable imaging device and method of using
PCT/US2007/002096 WO2007087421A2 (en) 2006-01-23 2007-01-23 Endoscope

Publications (1)

Publication Number Publication Date
EP1986541A2 true EP1986541A2 (en) 2008-11-05

Family

ID=39791297

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07717024A Withdrawn EP1986541A2 (en) 2006-01-23 2007-01-23 Endoscope

Country Status (2)

Country Link
EP (1) EP1986541A2 (en)
JP (2) JP5435957B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2515255C1 (en) * 2012-11-30 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" High-strength concrete
RU2515261C1 (en) * 2012-11-30 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" High-strength concrete
US9474440B2 (en) 2009-06-18 2016-10-25 Endochoice, Inc. Endoscope tip position visual indicator and heat management system
US9667935B2 (en) 2013-05-07 2017-05-30 Endochoice, Inc. White balance enclosure for use with a multi-viewing elements endoscope
US9706908B2 (en) 2010-10-28 2017-07-18 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
US9943218B2 (en) 2013-10-01 2018-04-17 Endochoice, Inc. Endoscope having a supply cable attached thereto
US9949623B2 (en) 2013-05-17 2018-04-24 Endochoice, Inc. Endoscope control unit with braking system
US9968242B2 (en) 2013-12-18 2018-05-15 Endochoice, Inc. Suction control unit for an endoscope having two working channels
US10064541B2 (en) 2013-08-12 2018-09-04 Endochoice, Inc. Endoscope connector cover detection and warning system
US10078207B2 (en) 2015-03-18 2018-09-18 Endochoice, Inc. Systems and methods for image magnification using relative movement between an image sensor and a lens assembly
US10105039B2 (en) 2013-06-28 2018-10-23 Endochoice, Inc. Multi-jet distributor for an endoscope
US10123684B2 (en) 2014-12-18 2018-11-13 Endochoice, Inc. System and method for processing video images generated by a multiple viewing elements endoscope
US10130246B2 (en) 2009-06-18 2018-11-20 Endochoice, Inc. Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope
US10258222B2 (en) 2014-07-21 2019-04-16 Endochoice, Inc. Multi-focal, multi-camera endoscope systems
US10271713B2 (en) 2015-01-05 2019-04-30 Endochoice, Inc. Tubed manifold of a multiple viewing elements endoscope
US10292570B2 (en) 2016-03-14 2019-05-21 Endochoice, Inc. System and method for guiding and tracking a region of interest using an endoscope
US10376181B2 (en) 2015-02-17 2019-08-13 Endochoice, Inc. System for detecting the location of an endoscopic device during a medical procedure
US10401611B2 (en) 2015-04-27 2019-09-03 Endochoice, Inc. Endoscope with integrated measurement of distance to objects of interest
US10488648B2 (en) 2016-02-24 2019-11-26 Endochoice, Inc. Circuit board assembly for a multiple viewing element endoscope using CMOS sensors
US10516865B2 (en) 2015-05-17 2019-12-24 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US10517464B2 (en) 2011-02-07 2019-12-31 Endochoice, Inc. Multi-element cover for a multi-camera endoscope
US10524645B2 (en) 2009-06-18 2020-01-07 Endochoice, Inc. Method and system for eliminating image motion blur in a multiple viewing elements endoscope
US10542877B2 (en) 2014-08-29 2020-01-28 Endochoice, Inc. Systems and methods for varying stiffness of an endoscopic insertion tube
US10595714B2 (en) 2013-03-28 2020-03-24 Endochoice, Inc. Multi-jet controller for an endoscope
US10663714B2 (en) 2010-10-28 2020-05-26 Endochoice, Inc. Optical system for an endoscope
US10898062B2 (en) 2015-11-24 2021-01-26 Endochoice, Inc. Disposable air/water and suction valves for an endoscope
US10993605B2 (en) 2016-06-21 2021-05-04 Endochoice, Inc. Endoscope system with multiple connection interfaces to interface with different video data signal sources
US11082598B2 (en) 2014-01-22 2021-08-03 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
US11234581B2 (en) 2014-05-02 2022-02-01 Endochoice, Inc. Elevator for directing medical tool
US11529197B2 (en) 2015-10-28 2022-12-20 Endochoice, Inc. Device and method for tracking the position of an endoscope within a patient's body
US11957311B2 (en) 2021-12-14 2024-04-16 Endochoice, Inc. Endoscope control unit with braking system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184060A (en) * 2013-03-25 2014-10-02 Fujikura Ltd Endoscope
KR101556881B1 (en) * 2015-02-10 2015-10-01 강윤식 Endoscope
KR102041236B1 (en) * 2018-01-29 2019-11-06 (주)커넥슨 Portable endoscope including multiple light sources and compound filters and multiple light source apparatus for the same
CN115279246A (en) * 2020-03-12 2022-11-01 麦迪格斯有限公司 Endoscopic device with movable camera

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347607Y2 (en) * 1981-04-21 1991-10-11
JPS63274911A (en) * 1987-05-07 1988-11-11 Toshiba Corp Electronic endoscope device
JP2945031B2 (en) * 1989-07-27 1999-09-06 オリンパス光学工業株式会社 Ultrasound endoscope
JPH04341232A (en) * 1991-03-11 1992-11-27 Olympus Optical Co Ltd Electronic endoscope system
JP3285924B2 (en) * 1992-04-10 2002-05-27 オリンパス光学工業株式会社 Bay bending equipment
JPH0956662A (en) * 1995-08-21 1997-03-04 Hitachi Ltd Side view type endoscope
JPH11125773A (en) * 1997-10-21 1999-05-11 Olympus Optical Co Ltd Endoscope
JP3969827B2 (en) * 1998-03-10 2007-09-05 オリンパス株式会社 Endoscope device
JP2001314365A (en) * 2000-05-02 2001-11-13 Nobuyuki Suzuki Endoscopic device
WO2005110186A2 (en) * 2004-05-14 2005-11-24 G.I. View Ltd. Omnidirectional and forward-looking imaging device
JP4530717B2 (en) * 2004-05-20 2010-08-25 オリンパス株式会社 Endoscope

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007087421A2 *

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10912454B2 (en) 2009-06-18 2021-02-09 Endochoice, Inc. Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope
US10524645B2 (en) 2009-06-18 2020-01-07 Endochoice, Inc. Method and system for eliminating image motion blur in a multiple viewing elements endoscope
US9474440B2 (en) 2009-06-18 2016-10-25 Endochoice, Inc. Endoscope tip position visual indicator and heat management system
US10130246B2 (en) 2009-06-18 2018-11-20 Endochoice, Inc. Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope
US10561308B2 (en) 2009-06-18 2020-02-18 Endochoice, Inc. Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope
US9907462B2 (en) 2009-06-18 2018-03-06 Endochoice, Inc. Endoscope tip position visual indicator and heat management system
US10412290B2 (en) 2010-10-28 2019-09-10 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
US10663714B2 (en) 2010-10-28 2020-05-26 Endochoice, Inc. Optical system for an endoscope
US9706908B2 (en) 2010-10-28 2017-07-18 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
US10779707B2 (en) 2011-02-07 2020-09-22 Endochoice, Inc. Multi-element cover for a multi-camera endoscope
US10517464B2 (en) 2011-02-07 2019-12-31 Endochoice, Inc. Multi-element cover for a multi-camera endoscope
RU2515255C1 (en) * 2012-11-30 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" High-strength concrete
RU2515261C1 (en) * 2012-11-30 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" High-strength concrete
US11375885B2 (en) 2013-03-28 2022-07-05 Endochoice Inc. Multi-jet controller for an endoscope
US10595714B2 (en) 2013-03-28 2020-03-24 Endochoice, Inc. Multi-jet controller for an endoscope
US10205925B2 (en) 2013-05-07 2019-02-12 Endochoice, Inc. White balance enclosure for use with a multi-viewing elements endoscope
US9667935B2 (en) 2013-05-07 2017-05-30 Endochoice, Inc. White balance enclosure for use with a multi-viewing elements endoscope
US11229351B2 (en) 2013-05-17 2022-01-25 Endochoice, Inc. Endoscope control unit with braking system
US9949623B2 (en) 2013-05-17 2018-04-24 Endochoice, Inc. Endoscope control unit with braking system
US10433715B2 (en) 2013-05-17 2019-10-08 Endochoice, Inc. Endoscope control unit with braking system
US10105039B2 (en) 2013-06-28 2018-10-23 Endochoice, Inc. Multi-jet distributor for an endoscope
US10064541B2 (en) 2013-08-12 2018-09-04 Endochoice, Inc. Endoscope connector cover detection and warning system
US9943218B2 (en) 2013-10-01 2018-04-17 Endochoice, Inc. Endoscope having a supply cable attached thereto
US9968242B2 (en) 2013-12-18 2018-05-15 Endochoice, Inc. Suction control unit for an endoscope having two working channels
US11082598B2 (en) 2014-01-22 2021-08-03 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
US11234581B2 (en) 2014-05-02 2022-02-01 Endochoice, Inc. Elevator for directing medical tool
US11229348B2 (en) 2014-07-21 2022-01-25 Endochoice, Inc. Multi-focal, multi-camera endoscope systems
US10258222B2 (en) 2014-07-21 2019-04-16 Endochoice, Inc. Multi-focal, multi-camera endoscope systems
US11883004B2 (en) 2014-07-21 2024-01-30 Endochoice, Inc. Multi-focal, multi-camera endoscope systems
US11771310B2 (en) 2014-08-29 2023-10-03 Endochoice, Inc. Systems and methods for varying stiffness of an endoscopic insertion tube
US10542877B2 (en) 2014-08-29 2020-01-28 Endochoice, Inc. Systems and methods for varying stiffness of an endoscopic insertion tube
US10123684B2 (en) 2014-12-18 2018-11-13 Endochoice, Inc. System and method for processing video images generated by a multiple viewing elements endoscope
US10271713B2 (en) 2015-01-05 2019-04-30 Endochoice, Inc. Tubed manifold of a multiple viewing elements endoscope
US10376181B2 (en) 2015-02-17 2019-08-13 Endochoice, Inc. System for detecting the location of an endoscopic device during a medical procedure
US11147469B2 (en) 2015-02-17 2021-10-19 Endochoice, Inc. System for detecting the location of an endoscopic device during a medical procedure
US10078207B2 (en) 2015-03-18 2018-09-18 Endochoice, Inc. Systems and methods for image magnification using relative movement between an image sensor and a lens assembly
US10634900B2 (en) 2015-03-18 2020-04-28 Endochoice, Inc. Systems and methods for image magnification using relative movement between an image sensor and a lens assembly
US11194151B2 (en) 2015-03-18 2021-12-07 Endochoice, Inc. Systems and methods for image magnification using relative movement between an image sensor and a lens assembly
US10401611B2 (en) 2015-04-27 2019-09-03 Endochoice, Inc. Endoscope with integrated measurement of distance to objects of interest
US11750782B2 (en) 2015-05-17 2023-09-05 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US11330238B2 (en) 2015-05-17 2022-05-10 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US10791308B2 (en) 2015-05-17 2020-09-29 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US10516865B2 (en) 2015-05-17 2019-12-24 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US11529197B2 (en) 2015-10-28 2022-12-20 Endochoice, Inc. Device and method for tracking the position of an endoscope within a patient's body
US11311181B2 (en) 2015-11-24 2022-04-26 Endochoice, Inc. Disposable air/water and suction valves for an endoscope
US10898062B2 (en) 2015-11-24 2021-01-26 Endochoice, Inc. Disposable air/water and suction valves for an endoscope
US10908407B2 (en) 2016-02-24 2021-02-02 Endochoice, Inc. Circuit board assembly for a multiple viewing elements endoscope using CMOS sensors
US10488648B2 (en) 2016-02-24 2019-11-26 Endochoice, Inc. Circuit board assembly for a multiple viewing element endoscope using CMOS sensors
US11782259B2 (en) 2016-02-24 2023-10-10 Endochoice, Inc. Circuit board assembly for a multiple viewing elements endoscope using CMOS sensors
US10292570B2 (en) 2016-03-14 2019-05-21 Endochoice, Inc. System and method for guiding and tracking a region of interest using an endoscope
US10993605B2 (en) 2016-06-21 2021-05-04 Endochoice, Inc. Endoscope system with multiple connection interfaces to interface with different video data signal sources
US11672407B2 (en) 2016-06-21 2023-06-13 Endochoice, Inc. Endoscope system with multiple connection interfaces to interface with different video data signal sources
US11957311B2 (en) 2021-12-14 2024-04-16 Endochoice, Inc. Endoscope control unit with braking system

Also Published As

Publication number Publication date
JP2013208459A (en) 2013-10-10
JP2009523570A (en) 2009-06-25
JP5435957B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
US8235887B2 (en) Endoscope assembly with retroscope
JP5435957B2 (en) Endoscope
US11529044B2 (en) Endoscope imaging device
US8289381B2 (en) Endoscope with an imaging catheter assembly and method of configuring an endoscope
US8872906B2 (en) Endoscope assembly with a polarizing filter
US8797392B2 (en) Endoscope assembly with a polarizing filter
EP1988812B1 (en) Endoscope with an imaging catheter assembly and method of configuring an endoscope
US20070293720A1 (en) Endoscope assembly and method of viewing an area inside a cavity
JP5502329B2 (en) Endoscope assembly with polarizing filter
US8197399B2 (en) System and method for producing and improving images
US20090231419A1 (en) Endoscope Assembly and Method of Performing a Medical Procedure
US20080021274A1 (en) Endoscopic medical device with locking mechanism and method
WO2009049322A2 (en) Endoscope assembly comprising retrograde viewing imaging device and instrument channel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080825

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090306

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170620