EP1821584A1 - Method of depositing a thermal barrier by plasma torch - Google Patents

Method of depositing a thermal barrier by plasma torch Download PDF

Info

Publication number
EP1821584A1
EP1821584A1 EP20070290212 EP07290212A EP1821584A1 EP 1821584 A1 EP1821584 A1 EP 1821584A1 EP 20070290212 EP20070290212 EP 20070290212 EP 07290212 A EP07290212 A EP 07290212A EP 1821584 A1 EP1821584 A1 EP 1821584A1
Authority
EP
European Patent Office
Prior art keywords
plasma
substrate
torches
powder
plasma jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20070290212
Other languages
German (de)
French (fr)
Other versions
EP1821584B1 (en
Inventor
Frédéric Braillard
Justine Menuey
Elise Nogues
Aurélien Tricoire
Michel Vardelle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA Services SA filed Critical SNECMA Services SA
Publication of EP1821584A1 publication Critical patent/EP1821584A1/en
Application granted granted Critical
Publication of EP1821584B1 publication Critical patent/EP1821584B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/44Plasma torches using an arc using more than one torch
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]

Definitions

  • the present invention relates to a method of depositing on a substrate a material acting as a thermal barrier, this material being, before deposition, in the form of a powder.
  • the substrate is for example a superalloy, in particular a superalloy intended to constitute turbomachine parts.
  • the two technologies used industrially for the deposition on a substrate of a material, typically a ceramic, acting as a thermal barrier, are plasma spraying, and vapor phase deposition.
  • Plasma spraying consists of injecting the material to be deposited, in powder form, into the plasma jet of a plasma torch.
  • the plasma jet is generated by the creation of an electric arc between the anode and the cathode of a plasma torch, which then ionizes the gaseous mixture blown through this arc by the plasma torch.
  • the size of the powder particles injected into the jet typically varies between 1 ⁇ m and 50 ⁇ m.
  • the plasma jet which reaches a temperature of 20 000 K and a speed of the order of 400 to 1000 m / s, causes and melts the powder particles. These strike the substrate in the form of droplets that solidify on impact in crushed form.
  • Vapor deposition generally uses an electron beam to vaporize the material to be deposited.
  • the most common technique is EBPVD (Electron Beam Physical Vapor Deposition).
  • the material once vaporized by the electron beam, condenses on the substrate. Because of the use of an electron beam, a secondary vacuum must be maintained in the enclosure enclosing the electron beam, the material to be deposited, and the substrate.
  • Electron Beam Directed Vapor Deposition is based on the EBPVD principle.
  • TPPVD Thermal Plasma Physical Vapor Deposition
  • the torch is coupled to a radio frequency source for increased efficiency.
  • the technical obstacle posed by this method is to maintain in the plasma the powder of material to be deposited long enough for it to vaporize.
  • the deposit resulting from the plasma projection has a lamellar morphology, the superimposed lamellae being parallel to the surface of the substrate.
  • the deposit has microcracks, which are due to the quenching that the droplets undergo upon impact on the substrate, and is porous.
  • the deposit therefore has the advantage, because of its structure and porosity, of having a low thermal conductivity.
  • the substrate is therefore better thermally protected.
  • this type of deposit has a limited life because the thermal expansions of the substrate tend to fracture the deposit and to delaminate it.
  • the deposit resulting from the electron beam vapor phase techniques has a columnar morphology, the columns being arranged next to each other and perpendicular to the surface of the substrate.
  • This deposit therefore has a good life, firstly because its structure accommodates many thermal expansions of the substrate, and secondly because its resistance to erosion is higher than that of a plasma deposit .
  • this deposit has a higher thermal conductivity than that of a deposit obtained by plasma spraying, which is undesirable because the deposit then constitutes a less effective thermal barrier.
  • the deposition rate and the yield are low. The low yield is due to the fact that this process creates a "cloud" of vapor, which therefore condenses indiscriminately, including on the walls.
  • electron beam deposition is a costly and delicate technique because it requires high electrical power for the supply of electron guns and obtaining a secondary vacuum pushed into large volume speakers.
  • the present invention aims to remedy these drawbacks, or at least to mitigate them.
  • the aim of the invention is to propose a method which makes it possible, on the one hand, to obtain a deposit combining the technical advantages of a lamellar deposition and of a columnar deposit, namely a low thermal conductivity, a good lifetime, a good resistance erosion, a high deposition rate and efficiency, on the other hand having a lower implementation cost than that of the vapor deposition process.
  • This object is achieved by virtue of the fact that the powder is introduced into the plasma jet of a first plasma torch and into the plasma jet of at least a second plasma torch, the first plasma torch and at least the second plasma torch being disposed in an enclosure and oriented so that their plasma jets intersect to create a resulting plasma jet in which the powder is vaporized, the substrate being placed in the axis of the resulting plasma jet.
  • the amount of energy received by the powder particles is increased, which promotes the evaporation of these particles.
  • the larger powder particles, which have not vaporized continue their trajectory in the axis of the respective jets, whereas the vaporized powder is driven by the flow of the gases.
  • the plasma jet resulting from the combination of the plasma jets of each of the torches There is therefore a separation between the non-vaporized powder particles and the material vapor.
  • the substrate is placed in the axis of the resulting plasma jet, it is impacted by the vapor phase material, which promotes a deposit of the material on the substrate in columnar form.
  • the deposition rate and yield are higher than using the electron beam vapor deposition technique.
  • a hybrid structure deposit can be obtained by the present method, combining simultaneously columnar and lamellar deposits.
  • This hybrid deposit has a low thermal conductivity, good life, good resistance to erosion, thus combining the advantages of columnar and lamellar structures.
  • the plasma is less dense, which allows the fine particles of the material powder to penetrate more easily into the plasma jet and thus to be better heated.
  • the reduction in pressure also makes it possible to reduce the saturation vapor pressure of the material, and thus to promote its evaporation.
  • the axes of the torches are the generatrices of a cone of central axis z, the axis of each of the torches forming with the central axis z of the cone an angle ⁇ of between 20 ° and 60 °, the central axis z of the cone being directed towards the surface of the substrate intended to receive the material to be deposited.
  • the plasma jets all intersect at the same point, and the orientation of the torches relative to each other is optimized to obtain a plasma jet where the powder particles are vaporized. Indeed, if the angles between the axes of the torches and the central axis z of the cone are too small, the largest non-vaporized particles are driven by the jet. If the angles between the axes of the torches and the central axis z of the cone are too high, the resulting plasma jet generated is insufficient.
  • the distance D between each of the torches and the substrate is between 50 mm and 500 mm.
  • the material is a ceramic.
  • the ceramic is selected from a group comprising yttria zirconia, zirconia that can be stabilized with at least one of the oxides selected from the following list: CaO; MgO, CeO 2 , and rare earth oxides.
  • the substrate may comprise on the surface a bonding sub-layer on which the material acting as a thermal barrier is deposited according to the process according to the invention.
  • the underlayer may also contribute to acting as a thermal barrier in conjunction with the deposited material.
  • the material introduced in powder form into each of the torches is different from one torch to the other.
  • the invention also relates to an installation for the deposition on a substrate of a material acting as a thermal barrier, the material being, before deposition, in the form of powder.
  • the installation comprises an enclosure in which the substrate is disposed, a first plasma torch and at least a second plasma torch disposed in said enclosure so that when the powder is introduced into the plasma jet of the first plasma torch and in the plasma jet of the second plasma torch, the plasma jet of said first plasma torch and the plasma jet of the second plasma torch intersect whereby a resulting plasma jet is created in which the powder is vaporized, the substrate being placed in the axis of the resulting plasma jet.
  • the installation further comprises a support adapted to receive the substrate, and supports for receiving each of the plasma torches, the supports being adjustable so as to allow any orientation of the torches.
  • the internal diameter of each of the torches is greater than 6 mm.
  • the invention also relates to a thermomechanical part obtained by depositing on a substrate a material acting as a thermal barrier according to the process according to the invention presented above.
  • an enclosure 2 comprises a first plasma torch 10, a second plasma torch 20, and a substrate 40.
  • the first plasma torch and the second plasma torch each form an angle ⁇ with a z axis directed towards the surface substrate for receiving the deposit (in the example shown, the z axis is perpendicular to the surface of the substrate 40).
  • the angle ⁇ is identical for the first and the second plasma torches 10, 20. However, this angle ⁇ could be different for each torch.
  • the angle ⁇ is between 20 ° and 60 °.
  • the end of each torch from which the plasma jet leaves is located at a distance D from the surface 42 of the substrate 40 intended to receive the deposit, the distance D being measured parallel to the axis z.
  • the distance D is identical for the first and the second plasma torches 10, 20. However, this distance could be different for each torch. Ideally, the distance D between each of the torches 10, 20 and the substrate 40 is between 50 mm and 500 mm.
  • FIG. 2 illustrates more precisely the deposition process according to the invention.
  • the first plasma torch 10 and the second plasma torch 20 operate in a conventional manner, without induction. This operation will not be described in detail, only the main principles are recalled below.
  • a gaseous mixture is expelled from each plasma torch 10, 20 through an electric arc between the anode and the cathode of each plasma torch. This gaseous mixture is thus ionized and ejected at high speed (typically between 500 and 2000 m / s) and high temperature (typically greater than 10,000 K), and forms a plasma jet 12, 22.
  • high speed typically between 500 and 2000 m / s
  • high temperature typically greater than 10,000 K
  • the material intended to be deposited on the substrate is introduced into each of the plasma jets in powder form at the end of the plasma torch from which the plasma jet is ejected.
  • the size of the particles constituting the powder typically varies between 1 ⁇ m and 100 ⁇ m.
  • the powder particles introduced into the plasma jet 12 of the first plasma torch 10, and those introduced into the plasma jet 22 of the second plasma torch 20, are heated by each of the jets as soon as they are discharged. introduction into the streams. They are driven to the crossing zone 32 where the first plasma jet 12 and the second plasma jet 22 intersect. At this crossing zone 32, the amount of energy received by the powder particles is increased, which favors the evaporation of these particles.
  • the largest powder particles of the first plasma jet, and the largest powder particles of the first plasma jet, which have not vaporized, continue their trajectory in the axis of the respective jets (axes of the torches), while the vaporized powder is driven by the gas flow in the resulting plasma jet formed by the combination of the first plasma jet 12 and the second plasma jet 22. There is therefore a separation between the non-vaporized powder particles and the material vapor.
  • the vapor of material transported by the resulting plasma jet 30 forms a deposit 50 of substantially columnar morphology.
  • a plasma torch typically operates at ambient pressure, it is not necessary to establish the vacuum in the chamber 2 containing the plasma torches 10, 20 and the substrate 40.
  • the cost of implementing the present method which allows the deposition of the vapor phase material on a substrate, is therefore lower than that of current vapor deposition technologies.
  • To improve the deposition it is possible, however, to establish a primary vacuum in the chamber 2. But unlike current vapor deposition technologies, it is not necessary to establish in the chamber a secondary vacuum, and the cost of implementing the present method is therefore less.
  • the diameter of a plasma torch is 6 mm. In order to improve the evaporation process, it is possible to use higher torch diameters.
  • the material to be deposited on the substrate 40 is typically a ceramic, because the thermal barriers having the best properties are obtained with ceramics.
  • the ceramics used are yttriated zirconia, in particular an yttria-containing zirconia comprising a mass content of yttrium oxide between 4% and 20%.
  • Ceramics can be used, such as, for example, zirconia which can be stabilized with at least one of the oxides selected from the following list: CaO, MgO, CeO 2 , and rare earth oxides, namely the oxides of scandium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium.
  • the substrate 40 may comprise on the surface a bonding sub-layer on which the material acting as a thermal barrier is deposited to form the deposit 50.
  • This sub-layer allows better bonding between the substrate 40 and the deposited material forming the deposit 50, and also plays the role of an additional thermal barrier.
  • the underlayer may be an oxidation-corrosion resistant alumino-forming alloy such as an alloy capable of forming a layer of protective alumina by oxidation, a MCrAlY type alloy, M being a metal chosen from nickel, chromium, iron or cobalt.
  • each of the plasma torches 10, 20 It is also possible to introduce into each of the plasma torches 10, 20 a different material, so as to obtain on the substrate 40 a deposit 50 whose composition is different from that of each of the materials introduced into the plasma torches 10, 20.
  • the flow of powder introduced into each torch 10, 20 may be the same or different from one torch to another.
  • the powder flow introduced into each torch 10, 20 may be constant in time or variable in time.

Abstract

The method involves introducing a material e.g. ceramic, which is in the form of powder, in plasma jets of plasma torches (10, 20), respectively, where the ceramic is chosen among e.g. yttrium zirconia, and zirconia stabilized with calcium oxide, magnesium oxide, cerium oxide and rare earth oxides. The torches are arranged in an enclosure (2) and are oriented such that the jets cross to create a plasma jet which is directional. A substrate (40) is placed in an axis of the directional plasma jet such that the substrate is affected by the material in vapor phase. Independent claims are also included for the following: (1) an installation for depositing a thermal barrier on a substrate (2) a thermomechanical part obtained from a thermal barrier depositing method.

Description

La présente invention concerne un procédé de dépôt sur un substrat d'un matériau jouant le rôle de barrière thermique, ce matériau se présentant, avant dépôt, sous forme d'une poudre.The present invention relates to a method of depositing on a substrate a material acting as a thermal barrier, this material being, before deposition, in the form of a powder.

Le substrat est par exemple un superalliage, en particulier un superalliage destiné à constituer des pièces de turbomachine.The substrate is for example a superalloy, in particular a superalloy intended to constitute turbomachine parts.

Les deux technologies utilisées industriellement pour le dépôt sur un substrat d'un matériau, typiquement une céramique, jouant le rôle de barrière thermique, sont la projection par plasma, et le dépôt en phase vapeur.The two technologies used industrially for the deposition on a substrate of a material, typically a ceramic, acting as a thermal barrier, are plasma spraying, and vapor phase deposition.

La projection par plasma consiste à injecter le matériau à déposer, sous forme pulvérulente, dans le jet plasma d'une torche plasma. Le jet plasma est généré grâce à la création d'un arc électrique entre l'anode et la cathode d'une torche plasma, qui ionise alors le mélange gazeux soufflé à travers cet arc par la torche plasma. La taille des particules de poudre injectées dans le jet varie typiquement entre 1 µm et 50 µm. Le jet plasma, qui atteint une température de 20 000 K et une vitesse de l'ordre de 400 à 1000 m/s, entraîne et fait fondre les particules de poudre. Celles-ci viennent heurter le substrat sous forme de gouttelettes qui se solidifient à l'impact sous forme écrasée.Plasma spraying consists of injecting the material to be deposited, in powder form, into the plasma jet of a plasma torch. The plasma jet is generated by the creation of an electric arc between the anode and the cathode of a plasma torch, which then ionizes the gaseous mixture blown through this arc by the plasma torch. The size of the powder particles injected into the jet typically varies between 1 μm and 50 μm. The plasma jet, which reaches a temperature of 20 000 K and a speed of the order of 400 to 1000 m / s, causes and melts the powder particles. These strike the substrate in the form of droplets that solidify on impact in crushed form.

Le dépôt en phase vapeur utilise en général un faisceau d'électrons pour vaporiser le matériau à déposer. La technique la plus courante est l'EBPVD ("Electron Beam Physical Vapor Deposition"). Le matériau, une fois vaporisé par le faisceau d'électrons, vient se condenser sur le substrat. A cause de l'utilisation d'un faisceau d'électrons, un vide secondaire doit être maintenu dans l'enceinte enfermant le faisceau d'électrons, le matériau à déposer, et le substrat.Vapor deposition generally uses an electron beam to vaporize the material to be deposited. The most common technique is EBPVD (Electron Beam Physical Vapor Deposition). The material, once vaporized by the electron beam, condenses on the substrate. Because of the use of an electron beam, a secondary vacuum must be maintained in the enclosure enclosing the electron beam, the material to be deposited, and the substrate.

Il existe d'autres technologies, mais qui ne sont pas encore au stade industriel. L'EBDVD ("Electron Beam Directed Vapor Deposition") est basée sur le principe de l'EBPVD. La TPPVD ("Thermal Plasma Physical Vapor Deposition") utilise une torche plasma comme source de chaleur pour évaporer le matériau à déposer. La torche est couplée à une source radiofréquence pour une efficacité accrue. L'obstacle technique posé par cette méthode est de maintenir dans le plasma la poudre de matériau à déposer suffisamment longtemps pour qu'elle se vaporise.There are other technologies, but they are not yet at the industrial stage. Electron Beam Directed Vapor Deposition (EBDVD) is based on the EBPVD principle. TPPVD ("Thermal Plasma Physical Vapor Deposition") uses a plasma torch as a heat source to evaporate the material to be deposited. The torch is coupled to a radio frequency source for increased efficiency. The technical obstacle posed by this method is to maintain in the plasma the powder of material to be deposited long enough for it to vaporize.

Chacune des deux technologies utilisées industriellement pour le dépôt sur un substrat d'un matériau jouant le rôle de barrière thermique possède des avantages et des inconvénients :Each of the two technologies used industrially for the deposition on a substrate of a material acting as a thermal barrier has advantages and disadvantages:

Le dépôt résultant de la projection par plasma présente une morphologie lamellaire, les lamelles superposées étant parallèles à la surface du substrat. Le dépôt possède des microfissures, qui sont dues à la trempe que les gouttelettes subissent à l'impact sur le substrat, et est poreux. Le dépôt a donc l'avantage, de par sa structure et sa porosité, de posséder une faible conductivité thermique. Le substrat est donc mieux protégé thermiquement. Par contre, ce type de dépôt présente une durée de vie limitée, car les dilatations thermiques du substrat ont tendance à fracturer le dépôt et à le délaminer. En outre il est difficile d'obtenir par ce procédé un dépôt d'épaisseur uniforme sur des pièces de forme complexe, car ce procédé est très directionnel.The deposit resulting from the plasma projection has a lamellar morphology, the superimposed lamellae being parallel to the surface of the substrate. The deposit has microcracks, which are due to the quenching that the droplets undergo upon impact on the substrate, and is porous. The deposit therefore has the advantage, because of its structure and porosity, of having a low thermal conductivity. The substrate is therefore better thermally protected. On the other hand, this type of deposit has a limited life because the thermal expansions of the substrate tend to fracture the deposit and to delaminate it. In addition, it is difficult to obtain by this method a deposition of uniform thickness on pieces of complex shape, because this method is very directional.

Le dépôt résultant des techniques en phase vapeur par faisceau d'électrons présente une morphologie colonnaire, les colonnes étant agencées les unes à côté des autres et de façon perpendiculaire à la surface du substrat. Ce dépôt a donc une bonne durée de vie, d'une part car sa structure s'accommode bien des dilatations thermiques du substrat, et d'autre part parce que sa résistance à l'érosion est plus élevée que celle d'un dépôt plasma. Par contre, ce dépôt possède une conductivité thermique plus élevée que celle d'un dépôt obtenu par projection plasma, ce qui est indésirable car le dépôt constitue alors une barrière thermique moins efficace. De plus, la vitesse de dépôt et le rendement sont faibles. La faiblesse du rendement est due au fait que ce procédé créé un "nuage" de vapeur, qui se condense donc de façon indiscriminée, y compris sur les parois. Surtout, le dépôt par faisceau d'électrons est une technique coûteuse et délicate car elle nécessite de fortes puissances électriques pour l'alimentation des canons à électrons et l'obtention d'un vide secondaire poussé dans des enceintes de grand volume.The deposit resulting from the electron beam vapor phase techniques has a columnar morphology, the columns being arranged next to each other and perpendicular to the surface of the substrate. This deposit therefore has a good life, firstly because its structure accommodates many thermal expansions of the substrate, and secondly because its resistance to erosion is higher than that of a plasma deposit . On the other hand, this deposit has a higher thermal conductivity than that of a deposit obtained by plasma spraying, which is undesirable because the deposit then constitutes a less effective thermal barrier. In addition, the deposition rate and the yield are low. The low yield is due to the fact that this process creates a "cloud" of vapor, which therefore condenses indiscriminately, including on the walls. Above all, electron beam deposition is a costly and delicate technique because it requires high electrical power for the supply of electron guns and obtaining a secondary vacuum pushed into large volume speakers.

La présente invention vise à remédier à ces inconvénients, ou tout au moins à les atténuer.The present invention aims to remedy these drawbacks, or at least to mitigate them.

L'invention vise à proposer une méthode permettant d'une part d'obtenir un dépôt combinant les avantages techniques d'un dépôt lamellaire et d'un dépôt colonnaire, à savoir une faible conductivité thermique, une bonne durée de vie, une bonne résistance à l'érosion, une vitesse de dépôt et un rendement élevés, d'autre part possédant un coût de mise en oeuvre plus faible que celui du procédé de dépôt en phase vapeur.The aim of the invention is to propose a method which makes it possible, on the one hand, to obtain a deposit combining the technical advantages of a lamellar deposition and of a columnar deposit, namely a low thermal conductivity, a good lifetime, a good resistance erosion, a high deposition rate and efficiency, on the other hand having a lower implementation cost than that of the vapor deposition process.

Ce but est atteint grâce au fait que la poudre est introduite dans le jet plasma d'une première torche plasma et dans le jet plasma d'au moins une deuxième torche plasma, la première torche plasma et au moins la deuxième torche plasma étant disposées dans une enceinte et orientées de sorte que leurs jets plasma se croisent de façon à créer un jet plasma résultant dans lequel la poudre est vaporisée, le substrat étant placé dans l'axe du jet plasma résultant.This object is achieved by virtue of the fact that the powder is introduced into the plasma jet of a first plasma torch and into the plasma jet of at least a second plasma torch, the first plasma torch and at least the second plasma torch being disposed in an enclosure and oriented so that their plasma jets intersect to create a resulting plasma jet in which the powder is vaporized, the substrate being placed in the axis of the resulting plasma jet.

Grâce à l'utilisation de deux torches plasma, la quantité d'énergie reçue par les particules de poudre est augmentée, ce qui favorise l'évaporation de ces particules. Par ailleurs, lors de la rencontre des jets plasma, les particules de poudre les plus grosses, qui ne se sont pas vaporisées, continuent leur trajectoire dans l'axe des jets respectifs, tandis que la poudre vaporisée est entraînée par l'écoulement des gaz dans le jet plasma résultant de la combinaison des jets plasma de chacune des torches. Il se produit donc une séparation entre les particules de poudre non vaporisées et la vapeur de matériau. Ainsi, lorsque le substrat est placé dans l'axe du jet plasma résultant, il est impacté par le matériau en phase vapeur, ce qui favorise un dépôt du matériau sur le substrat sous forme colonnaire.Thanks to the use of two plasma torches, the amount of energy received by the powder particles is increased, which promotes the evaporation of these particles. Moreover, when the plasma jets meet, the larger powder particles, which have not vaporized, continue their trajectory in the axis of the respective jets, whereas the vaporized powder is driven by the flow of the gases. in the plasma jet resulting from the combination of the plasma jets of each of the torches. There is therefore a separation between the non-vaporized powder particles and the material vapor. Thus, when the substrate is placed in the axis of the resulting plasma jet, it is impacted by the vapor phase material, which promotes a deposit of the material on the substrate in columnar form.

Egalement, grâce au fait que le jet résultant est directionnel, la vitesse de dépôt et le rendement sont plus élevés qu'en utilisant la technique du dépôt en phase vapeur par faisceau d'électrons.Also, because the resulting jet is directional, the deposition rate and yield are higher than using the electron beam vapor deposition technique.

En outre, il n'est pas nécessaire d'établir le vide dans l'enceinte contenant les torches et le substrat, et la puissance de fonctionnement des torches plasma est plus faible que celle d'un faisceau d'électrons. Le coût de mise en oeuvre du présent procédé est donc plus faible que celui des technologies actuelles de dépôt en phase vapeur.In addition, it is not necessary to establish the vacuum in the chamber containing the torches and the substrate, and the operating power of the plasma torches is lower than that of an electron beam. The cost of implementing the present process is therefore lower than that of current vapor deposition technologies.

De plus, en modifiant les paramètres des torches plasma, on peut diminuer la proportion des particules de poudre qui sont évaporées, et ainsi favoriser un dépôt sur le substrat sous forme lamellaire. Au total, on peut donc obtenir par le présent procédé un dépôt de structure hybride, combinant simultanément des dépôts sous forme colonnaire et lamellaire. Ce dépôt hybride possède une faible conductivité thermique, une bonne durée de vie, une bonne résistance à l'érosion, combinant ainsi les avantages des structures colonnaire et lamellaire.In addition, by modifying the parameters of the plasma torches, it is possible to reduce the proportion of powder particles which are evaporated, and thus to favor a deposit on the substrate in lamellar form. In total, therefore, a hybrid structure deposit can be obtained by the present method, combining simultaneously columnar and lamellar deposits. This hybrid deposit has a low thermal conductivity, good life, good resistance to erosion, thus combining the advantages of columnar and lamellar structures.

Par exemple, deux torches plasma seulement sont utilisées.For example, only two plasma torches are used.

Avantageusement, il existe une dépression dans l'enceinte.Advantageously, there is a depression in the enclosure.

Grâce à la création d'une simple dépression peu importante (vide primaire) dans l'enceinte, le plasma est moins dense, ce qui permet aux particules fines de la poudre de matériau de pénétrer plus facilement dans le jet plasma et donc d'être mieux chauffées. La diminution de la pression permet également de réduire la pression de vapeur saturante du matériau, et donc de favoriser son évaporation.Thanks to the creation of a simple low vacuum (primary vacuum) in the chamber, the plasma is less dense, which allows the fine particles of the material powder to penetrate more easily into the plasma jet and thus to be better heated. The reduction in pressure also makes it possible to reduce the saturation vapor pressure of the material, and thus to promote its evaporation.

Avantageusement, les axes des torches sont les génératrices d'un cône d'axe central z, l'axe de chacune des torches faisant avec l'axe central z du cône un angle α compris entre 20° et 60°, l'axe central z du cône étant dirigé vers la surface du substrat destinée à recevoir le matériau à déposer.Advantageously, the axes of the torches are the generatrices of a cone of central axis z, the axis of each of the torches forming with the central axis z of the cone an angle α of between 20 ° and 60 °, the central axis z of the cone being directed towards the surface of the substrate intended to receive the material to be deposited.

Grâce à cette disposition, les jets plasma se croisent tous en un même point, et l'orientation des torches les unes par rapport aux autres est optimisée pour obtenir un jet plasma où les particules de poudre sont vaporisées. En effet, si les angles entre les axes des torches et l'axe central z du cône sont trop faibles, les particules les plus grosses non vaporisées sont entraînées par le jet. Si les angles entre les axes des torches et l'axe central z du cône sont trop élevés, le jet plasma résultant généré est insuffisant.With this arrangement, the plasma jets all intersect at the same point, and the orientation of the torches relative to each other is optimized to obtain a plasma jet where the powder particles are vaporized. Indeed, if the angles between the axes of the torches and the central axis z of the cone are too small, the largest non-vaporized particles are driven by the jet. If the angles between the axes of the torches and the central axis z of the cone are too high, the resulting plasma jet generated is insufficient.

Avantageusement, la distance D entre chacune des torches et le substrat est comprise entre 50 mm et 500 mm.Advantageously, the distance D between each of the torches and the substrate is between 50 mm and 500 mm.

Grâce à cette disposition, le dépôt de la poudre vaporisée sur le substrat est optimisé.With this arrangement, the deposition of the vaporized powder on the substrate is optimized.

Avantageusement, le matériau est une céramique.Advantageously, the material is a ceramic.

Par exemple, la céramique est choisie dans un groupe comprenant de la zircone yttriée, de la zircone pouvant être stabilisée avec au moins un des oxydes sélectionnés dans la liste suivante : CaO; MgO, CeO2, et les oxydes de terres rares.For example, the ceramic is selected from a group comprising yttria zirconia, zirconia that can be stabilized with at least one of the oxides selected from the following list: CaO; MgO, CeO 2 , and rare earth oxides.

Avantageusement, le substrat peut comporter en surface une sous-couche de liaison sur laquelle le matériau jouant le rôle de barrière thermique est déposé selon le procédé conforme à l'invention.Advantageously, the substrate may comprise on the surface a bonding sub-layer on which the material acting as a thermal barrier is deposited according to the process according to the invention.

Grâce à la présence de cette sous-couche, il y a un meilleur accrochage entre le substrat et le matériau déposé. La sous-couche peut également contribuer à jouer le rôle de barrière thermique conjointement au matériau déposé.Thanks to the presence of this underlayer, there is a better bond between the substrate and the deposited material. The underlayer may also contribute to acting as a thermal barrier in conjunction with the deposited material.

Avantageusement, le matériau introduit sous forme de poudre dans chacune des torches est différent d'une torche à l'autre.Advantageously, the material introduced in powder form into each of the torches is different from one torch to the other.

L'invention concerne également une installation destinée au dépôt sur un substrat d'un matériau jouant le rôle de barrière thermique, le matériau se présentant, avant dépôt, sous forme de poudre.The invention also relates to an installation for the deposition on a substrate of a material acting as a thermal barrier, the material being, before deposition, in the form of powder.

Selon l'invention, l'installation comprend une enceinte dans laquelle est disposé le substrat, une première torche plasma et au moins une deuxième torche plasma disposées dans ladite enceinte de façon que lorsque la poudre est introduite dans le jet plasma de la première torche plasma et dans le jet plasma de la deuxième torche plasma, le jet plasma de ladite première torche plasma et le jet plasma de la deuxième torche plasma se croisent ce par quoi on créé un jet plasma résultant dans lequel la poudre est vaporisée, le substrat étant placé dans l'axe du jet plasma résultant.According to the invention, the installation comprises an enclosure in which the substrate is disposed, a first plasma torch and at least a second plasma torch disposed in said enclosure so that when the powder is introduced into the plasma jet of the first plasma torch and in the plasma jet of the second plasma torch, the plasma jet of said first plasma torch and the plasma jet of the second plasma torch intersect whereby a resulting plasma jet is created in which the powder is vaporized, the substrate being placed in the axis of the resulting plasma jet.

L'installation comprend en outre un support apte à recevoir le substrat, et des supports pour recevoir chacune des torches plasma, les supports étant réglables de façon à permettre une orientation quelconque des torches.The installation further comprises a support adapted to receive the substrate, and supports for receiving each of the plasma torches, the supports being adjustable so as to allow any orientation of the torches.

Avantageusement, le diamètre interne de chacune des torches est supérieur à 6 mm.Advantageously, the internal diameter of each of the torches is greater than 6 mm.

Grâce à cette disposition, la densité du plasma au sortir des tuyères est plus faible, et donc le temps de séjour des particules à l'intérieur du plasma est plus long. Les particules de poudre sont donc mieux vaporisées.With this arrangement, the density of the plasma out of the nozzles is lower, and therefore the residence time of the particles inside the plasma is longer. The powder particles are therefore better vaporized.

L'invention concerne également une pièce thermomécanique obtenue par dépôt sur un substrat d'un matériau jouant le rôle de barrière thermique selon le procédé conforme à l'invention présenté précédemment.The invention also relates to a thermomechanical part obtained by depositing on a substrate a material acting as a thermal barrier according to the process according to the invention presented above.

L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels :

  • la figure 1 est une vue d'ensemble d'une installation permettant la mise en oeuvre du procédé selon l'invention,
  • la figure 2 est une vue représentant le croisement des jets plasma, et du jet plasma résultant.
The invention will be better understood and its advantages will appear better on reading the detailed description which follows, of an embodiment shown by way of non-limiting example. The description refers to the accompanying drawings in which:
  • FIG. 1 is an overall view of an installation for implementing the method according to the invention,
  • Figure 2 is a view showing the intersection of the plasma jets, and the resulting plasma jet.

Comme représenté sur la figure 1, une enceinte 2 comprend une première torche plasma 10, une deuxième torche plasma 20, et un substrat 40. La première torche plasma et la deuxième torche plasma forment chacune un angle α avec un axe z dirigé vers la surface du substrat destinée à recevoir le dépôt (sur l'exemple illustré, l'axe z est perpendiculaire à la surface du substrat 40). Pour des raisons de symétrie, l'angle α est identique pour la première et la deuxième torches plasma 10, 20. Toutefois, cet angle α pourrait être différent pour chaque torche. Idéalement, l'angle α est compris entre 20° et 60°. L'extrémité de chaque torche d'où sort le jet plasma est située à une distance D de la surface 42 du substrat 40 destinée à recevoir le dépôt, la distance D étant mesurée parallèlement à l'axe z. Pour des raisons de symétrie, la distance D est identique pour la première et la deuxième torches plasma 10, 20. Toutefois, cette distance pourrait être différente pour chaque torche. Idéalement, la distance D entre chacune des torches 10, 20 et le substrat 40 est comprise entre 50 mm et 500 mm.As shown in FIG. 1, an enclosure 2 comprises a first plasma torch 10, a second plasma torch 20, and a substrate 40. The first plasma torch and the second plasma torch each form an angle α with a z axis directed towards the surface substrate for receiving the deposit (in the example shown, the z axis is perpendicular to the surface of the substrate 40). For reasons of symmetry, the angle α is identical for the first and the second plasma torches 10, 20. However, this angle α could be different for each torch. Ideally, the angle α is between 20 ° and 60 °. The end of each torch from which the plasma jet leaves is located at a distance D from the surface 42 of the substrate 40 intended to receive the deposit, the distance D being measured parallel to the axis z. For reasons of symmetry, the distance D is identical for the first and the second plasma torches 10, 20. However, this distance could be different for each torch. Ideally, the distance D between each of the torches 10, 20 and the substrate 40 is between 50 mm and 500 mm.

La figure 2 illustre plus précisément le procédé de dépôt selon l'invention. La première torche plasma 10 et la deuxième torche plasma 20 fonctionnent de façon classique, sans induction. Ce fonctionnement ne sera donc pas décrit en détails, seuls les grands principes sont rappelés ci-après. Un mélange gazeux est expulsé de chaque torche plasma 10, 20 à travers un arc électrique entre l'anode et la cathode de chaque torche plasma. Ce mélange gazeux est ainsi ionisé et éjecté à grande vitesse (typiquement comprise entre 500 et 2000 m/s) et haute température (typiquement supérieure à 10 000 K), et forme un jet plasma 12, 22.Figure 2 illustrates more precisely the deposition process according to the invention. The first plasma torch 10 and the second plasma torch 20 operate in a conventional manner, without induction. This operation will not be described in detail, only the main principles are recalled below. A gaseous mixture is expelled from each plasma torch 10, 20 through an electric arc between the anode and the cathode of each plasma torch. This gaseous mixture is thus ionized and ejected at high speed (typically between 500 and 2000 m / s) and high temperature (typically greater than 10,000 K), and forms a plasma jet 12, 22.

Le matériau destiné à être déposé sur le substrat est introduit dans chacun des jets plasma sous forme de poudre au niveau de l'extrémité de la torche plasma d'où est éjecté le jet plasma. La taille des particules constituant la poudre varie typiquement entre 1µm et 100µm.The material intended to be deposited on the substrate is introduced into each of the plasma jets in powder form at the end of the plasma torch from which the plasma jet is ejected. The size of the particles constituting the powder typically varies between 1 μm and 100 μm.

Les particules de poudre introduites dans le jet plasma 12 de la première torche plasma 10, et celles introduites dans le jet plasma 22 de la deuxième torche plasma 20, sont chauffées par chacun des jets dès leur introduction dans les jets. Elles sont entraînées jusqu'à la zone de croisement 32 où le premier jet plasma 12 et le deuxième jet plasma 22 se croisent. Au niveau de cette zone de croisement 32, la quantité d'énergie reçue par les particules de poudre est augmentée, ce qui favorise l'évaporation de ces particules. Les particules de poudre les plus grosses 15 du premier jet plasma, et les particules de poudre les plus grosses 25 du premier jet plasma, qui ne se sont pas vaporisées, continuent leur trajectoire dans l'axe des jets respectifs (axes des torches), tandis que la poudre vaporisée est entraînée par l'écoulement des gaz dans le jet plasma résultant 30 formé par la combinaison du premier jet plasma 12 et du deuxième jet plasma 22. Il se produit donc une séparation entre les particules de poudre non vaporisées et la vapeur de matériau. En se déposant sur le substrat 40, la vapeur de matériau transportée par le jet plasma résultant 30 forme un dépôt 50, de morphologie essentiellement colonnaire.The powder particles introduced into the plasma jet 12 of the first plasma torch 10, and those introduced into the plasma jet 22 of the second plasma torch 20, are heated by each of the jets as soon as they are discharged. introduction into the streams. They are driven to the crossing zone 32 where the first plasma jet 12 and the second plasma jet 22 intersect. At this crossing zone 32, the amount of energy received by the powder particles is increased, which favors the evaporation of these particles. The largest powder particles of the first plasma jet, and the largest powder particles of the first plasma jet, which have not vaporized, continue their trajectory in the axis of the respective jets (axes of the torches), while the vaporized powder is driven by the gas flow in the resulting plasma jet formed by the combination of the first plasma jet 12 and the second plasma jet 22. There is therefore a separation between the non-vaporized powder particles and the material vapor. By being deposited on the substrate 40, the vapor of material transported by the resulting plasma jet 30 forms a deposit 50 of substantially columnar morphology.

Une torche plasma fonctionnant typiquement à pression ambiante, il n'est pas nécessaire d'établir le vide dans l'enceinte 2 contenant les torches plasma 10, 20 et le substrat 40. Le coût de mise en oeuvre du présent procédé, qui permet le dépôt du matériau en phase vapeur sur un substrat, est donc plus faible que celui des technologies actuelles de dépôt en phase vapeur. Pour améliorer le dépôt, il est possible toutefois d'établir un vide primaire dans l'enceinte 2. Mais contrairement aux technologies actuelles de dépôt en phase vapeur, il n'est pas nécessaire d'établir dans l'enceinte un vide secondaire, et le coût de mise en oeuvre du présent procédé est donc moindre.Since a plasma torch typically operates at ambient pressure, it is not necessary to establish the vacuum in the chamber 2 containing the plasma torches 10, 20 and the substrate 40. The cost of implementing the present method, which allows the deposition of the vapor phase material on a substrate, is therefore lower than that of current vapor deposition technologies. To improve the deposition, it is possible, however, to establish a primary vacuum in the chamber 2. But unlike current vapor deposition technologies, it is not necessary to establish in the chamber a secondary vacuum, and the cost of implementing the present method is therefore less.

Typiquement le diamètre d'une torche plasma est de 6 mm. Afin d'améliorer le processus d'évaporation, il est possible d'utiliser des diamètres de torche supérieurs.Typically the diameter of a plasma torch is 6 mm. In order to improve the evaporation process, it is possible to use higher torch diameters.

Le matériau à déposer sur le substrat 40 est typiquement une céramique, car les barrières thermiques possédant les meilleures propriétés sont obtenues avec des céramiques. Typiquement, les céramiques utilisées sont des zircones yttriées, en particulier une zircone yttriée comprenant une teneur massique d'oxyde d'yttrium entre 4% et 20%. D'autres céramiques peuvent être utilisées, comme par exemple zircone pouvant être stabilisée avec au moins un des oxydes sélectionnés dans la liste suivante : CaO, MgO, CeO2, et les oxydes de terres rares, à savoir les oxydes de scandium, de lanthane, de cérium, de praséodyme, néodyme, prométhium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutétium.The material to be deposited on the substrate 40 is typically a ceramic, because the thermal barriers having the best properties are obtained with ceramics. Typically, the ceramics used are yttriated zirconia, in particular an yttria-containing zirconia comprising a mass content of yttrium oxide between 4% and 20%. Other ceramics can be used, such as, for example, zirconia which can be stabilized with at least one of the oxides selected from the following list: CaO, MgO, CeO 2 , and rare earth oxides, namely the oxides of scandium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium.

Le substrat 40 peut comporter en surface une sous-couche de liaison sur laquelle le matériau jouant le rôle de barrière thermique est déposé pour former le dépôt 50. Cette sous-couche permet un meilleur accrochage entre le substrat 40 et le matériau déposé formant le dépôt 50, et joue également le rôle d'une barrière thermique supplémentaire. Par exemple, la sous-couche peut être un alliage alumino-formeur résistant à l'oxydation-corrosion tel qu'un alliage apte à former une couche d'alumine protectrice par oxydation, un alliage de type MCrAlY, M étant un métal choisi parmi le nickel, le chrome, le fer ou le cobalt.The substrate 40 may comprise on the surface a bonding sub-layer on which the material acting as a thermal barrier is deposited to form the deposit 50. This sub-layer allows better bonding between the substrate 40 and the deposited material forming the deposit 50, and also plays the role of an additional thermal barrier. For example, the underlayer may be an oxidation-corrosion resistant alumino-forming alloy such as an alloy capable of forming a layer of protective alumina by oxidation, a MCrAlY type alloy, M being a metal chosen from nickel, chromium, iron or cobalt.

Il est possible également d'introduire dans chacune des torches plasma 10, 20 un matériau différent, de façon à obtenir sur le substrat 40 un dépôt 50 dont la composition est différente de celle de chacun des matériaux introduits dans les torches plasma 10, 20. Le débit de poudre introduite dans chaque torche 10, 20 peut être le même ou différent d'une torche à l'autre. Par ailleurs, le débit de poudre introduite dans chaque torche 10, 20 peut être constant dans le temps ou variable dans le temps.It is also possible to introduce into each of the plasma torches 10, 20 a different material, so as to obtain on the substrate 40 a deposit 50 whose composition is different from that of each of the materials introduced into the plasma torches 10, 20. The flow of powder introduced into each torch 10, 20 may be the same or different from one torch to another. Moreover, the powder flow introduced into each torch 10, 20 may be constant in time or variable in time.

Le procédé pour le dépôt sur un substrat d'un matériau jouant le rôle de barrière thermique a été décrit dans le cas où deux torches plasma sont utilisées. Toutefois, un nombre plus important de torches pourrait être utilisé pour le dépôt.The method for the deposition on a substrate of a material acting as a thermal barrier has been described in the case where two plasma torches are used. However, a larger number of torches could be used for the deposit.

Claims (12)

Procédé pour le dépôt sur un substrat (40) d'un matériau jouant le rôle de barrière thermique, ledit matériau étant avant dépôt sous forme de poudre, caractérisé en ce que ladite poudre est introduite dans le jet plasma (12) d'une première torche plasma (10) et dans le jet plasma (22) d'au moins une deuxième torche plasma (20), la première torche plasma (10) et au moins la deuxième torche plasma (20) étant disposées dans une enceinte (2) et orientées de sorte que leurs jets plasma (12,22) se croisent de façon à créer un jet plasma résultant (30) dans lequel ladite poudre est vaporisée, ledit substrat (40) étant placé dans l'axe dudit jet plasma résultant (30).Process for the deposition on a substrate (40) of a material acting as a thermal barrier, said material being before deposition in powder form, characterized in that said powder is introduced into the plasma jet (12) of a first plasma torch (10) and in the plasma jet (22) of at least one second plasma torch (20), the first plasma torch (10) and at least the second plasma torch (20) being arranged in a chamber (2) and oriented so that their plasma jets (12,22) intersect to create a resultant plasma jet (30) in which said powder is vaporized, said substrate (40) being placed in the axis of said resulting plasma jet (30). ). Procédé selon la revendication 1 caractérisé en ce que seulement deux desdites torches plasma (10, 20) sont utilisées.Method according to claim 1 characterized in that only two of said plasma torches (10, 20) are used. Procédé selon la revendication 1 ou 2 caractérisé en ce qu'il existe une dépression dans ladite enceinte (2).Process according to claim 1 or 2, characterized in that a depression exists in said enclosure (2). Procédé selon l'une des revendications 1 à 3 caractérisé en ce que les axes desdites torches (10, 20) sont les génératrices d'un cône d'axe central (z), l'axe de chacune desdites torches (10, 20) faisant avec l'axe central (z) du cône un angle (α) compris entre 20° et 60°, l'axe central (z) du cône étant dirigé vers la surface (42) du substrat (40) destinée à recevoir le matériau à déposer.Method according to one of claims 1 to 3 characterized in that the axes of said torches (10, 20) are the generatrices of a cone of central axis (z), the axis of each of said torches (10, 20) making with the central axis (z) of the cone an angle (α) of between 20 ° and 60 °, the central axis (z) of the cone being directed towards the surface (42) of the substrate (40) intended to receive the material to be deposited. Procédé selon l'une quelconque des revendications 1 à 4 caractérisé en ce que la distance D entre chacune desdites torches (10, 20) et ledit substrat (40) est comprise entre 50 mm et 500 mm.Method according to any one of claims 1 to 4 characterized in that the distance D between each of said torches (10, 20) and said substrate (40) is between 50 mm and 500 mm. Procédé selon l'une quelconque des revendications 1 à 5 caractérisé en ce que ledit matériau est une céramique.Process according to any one of claims 1 to 5 characterized in that said material is a ceramic. Procédé selon la revendication 6 caractérisé en ce que ladite céramique est choisie dans un groupe comprenant de la zircone yttriée, de la zircone pouvant être stabilisée avec au moins un des oxydes sélectionnés dans la liste suivante : CaO, MgO, CeO2, et les oxydes de terres rares.Process according to Claim 6, characterized in that the said ceramic is chosen from a group comprising yttriated zirconia, zirconia which can be stabilized with at least one of the oxides selected from the following list: CaO, MgO, CeO 2 , and the oxides rare earths. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit substrat (40) peut comporter en surface (42) une sous-couche de liaison sur laquelle ledit matériau jouant le rôle de barrière thermique est déposé.Method according to any one of claims 1 to 7, characterized in that said substrate (40) may comprise on the surface (42) a bonding sub-layer on which said material acting as a thermal barrier is deposited. Procédé selon l'une quelconque des revendications 1 à 8 caractérisé en ce que ledit matériau introduit sous forme de poudre dans chacune desdites torches (10, 20) est différent d'une torche à l'autre.Method according to any one of claims 1 to 8 characterized in that said material introduced in powder form into each of said torches (10, 20) is different from one torch to another. Installation destinée au dépôt sur un substrat (40) d'un matériau jouant le rôle de barrière thermique, ledit matériau étant avant dépôt sous forme de poudre, caractérisée en ce qu'elle comprend une enceinte (2) dans laquelle est disposé ledit substrat, une première torche plasma (10) et au moins une deuxième torche plasma (20) disposées dans ladite enceinte (2) de façon que lorsque ladite poudre est introduite dans le jet plasma (12) de ladite première torche plasma (10) et dans le jet plasma (22) d'au moins ladite deuxième torche plasma (20), le jet plasma (12) de ladite première torche plasma (10) et le jet plasma (22) de ladite deuxième torche plasma (20) se croisent ce par quoi on créé un jet plasma résultant (30) dans lequel ladite poudre est vaporisée, ledit substrat (40) étant placé dans l'axe dudit jet plasma résultant (30).Installation intended for the deposition on a substrate (40) of a material acting as a thermal barrier, said material being before deposition in the form of powder, characterized in that it comprises an enclosure (2) in which said substrate is disposed, a first plasma torch (10) and at least one second plasma torch (20) disposed in said enclosure (2) so that when said powder is introduced into the plasma jet (12) of said first plasma torch (10) and into the plasma jet (22) of at least said second plasma torch (20), the plasma jet (12) of said first plasma torch (10) and the plasma jet (22) of said second plasma torch (20) cross each other by whereby a resulting plasma jet (30) is created in which said powder is vaporized, said substrate (40) being placed in the axis of said resulting plasma jet (30). Installation selon la revendication 10 caractérisée en ce que le diamètre interne de chacune desdites torches (10, 20) est supérieur à 6 mm.Installation according to claim 10 characterized in that the internal diameter of each of said torches (10, 20) is greater than 6 mm. Pièce thermomécanique obtenue par un procédé selon l'une quelconque des revendications 1 à 9.Thermomechanical part obtained by a process according to any one of Claims 1 to 9.
EP20070290212 2006-02-20 2007-02-20 Method of depositing a thermal barrier by plasma torch Active EP1821584B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0650590A FR2897748B1 (en) 2006-02-20 2006-02-20 THERMAL BARRIER DEPOSITION METHOD BY PLASMA TORCH

Publications (2)

Publication Number Publication Date
EP1821584A1 true EP1821584A1 (en) 2007-08-22
EP1821584B1 EP1821584B1 (en) 2009-12-23

Family

ID=37030405

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070290212 Active EP1821584B1 (en) 2006-02-20 2007-02-20 Method of depositing a thermal barrier by plasma torch

Country Status (7)

Country Link
US (2) US7763328B2 (en)
EP (1) EP1821584B1 (en)
JP (1) JP5498649B2 (en)
CA (1) CA2577898C (en)
DE (1) DE602007003869D1 (en)
FR (1) FR2897748B1 (en)
RU (1) RU2453627C2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959244B1 (en) 2010-04-23 2012-06-29 Commissariat Energie Atomique PROCESS FOR PREPARING A MULTILAYER COATING ON A SURFACE OF A SUBSTRATE BY THERMAL PROJECTION
US10862073B2 (en) * 2012-09-25 2020-12-08 The Trustees Of Princeton University Barrier film for electronic devices and substrates
DE102014221735A1 (en) * 2014-10-24 2016-04-28 Mahle Lnternational Gmbh Thermal spraying method and device therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714390A (en) * 1968-12-31 1973-01-30 Anvar Processes for producing plasma streams within flows of fluids
US3912235A (en) * 1974-12-19 1975-10-14 United Technologies Corp Multiblend powder mixing apparatus
US3997468A (en) * 1974-02-27 1976-12-14 Pavel Petrovich Maljushevsky Method of creating high and superhigh pressure and an arrangement for dispersing non-metalliferous materials
US4818837A (en) * 1984-09-27 1989-04-04 Regents Of The University Of Minnesota Multiple arc plasma device with continuous gas jet

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2224991A5 (en) * 1973-04-05 1974-10-31 France Etat
US4681772A (en) * 1986-05-05 1987-07-21 General Electric Company Method of producing extended area high quality plasma spray deposits
US4683148A (en) * 1986-05-05 1987-07-28 General Electric Company Method of producing high quality plasma spray deposits of complex geometry
US5144110A (en) * 1988-11-04 1992-09-01 Marantz Daniel Richard Plasma spray gun and method of use
US4943345A (en) * 1989-03-23 1990-07-24 Board Of Trustees Operating Michigan State University Plasma reactor apparatus and method for treating a substrate
US5047612A (en) * 1990-02-05 1991-09-10 General Electric Company Apparatus and method for controlling powder deposition in a plasma spray process
JPH04362094A (en) * 1991-06-07 1992-12-15 Fujitsu Ltd Vapor phase synthesis of diamond
US5679167A (en) * 1994-08-18 1997-10-21 Sulzer Metco Ag Plasma gun apparatus for forming dense, uniform coatings on large substrates
GB9419328D0 (en) * 1994-09-24 1994-11-09 Sprayform Tools & Dies Ltd Method for controlling the internal stresses in spray deposited articles
US5837959A (en) * 1995-09-28 1998-11-17 Sulzer Metco (Us) Inc. Single cathode plasma gun with powder feed along central axis of exit barrel
JP2000500273A (en) * 1995-11-13 2000-01-11 イエステ インスタント サーフェイス テクノロジー ソシエテ アノニム Plasma arc stream generator with closed configuration
JP3307242B2 (en) * 1996-10-04 2002-07-24 株式会社日立製作所 Ceramic coated heat resistant member, its use and gas turbine
EP1029101B1 (en) * 1997-11-03 2001-09-12 Siemens Aktiengesellschaft Product, especially a gas turbine component, with a ceramic heat insulating layer, and process for making the same
US6322856B1 (en) * 1999-02-27 2001-11-27 Gary A. Hislop Power injection for plasma thermal spraying
US6492613B2 (en) * 2000-05-15 2002-12-10 Jetek, Inc. System for precision control of the position of an atmospheric plasma
RU2200208C2 (en) * 2001-04-23 2003-03-10 Институт физики прочности и материаловедения СО РАН Method of application of plasma coat
US7557324B2 (en) * 2002-09-18 2009-07-07 Volvo Aero Corporation Backstream-preventing thermal spraying device
RU2247792C2 (en) * 2003-01-27 2005-03-10 Балдаев Лев Христофорович Method for deposition of heat-protective coating
CA2460296C (en) * 2003-05-23 2012-02-14 Sulzer Metco Ag A hybrid method for the coating of a substrate by a thermal application of the coating
US7032808B2 (en) * 2003-10-06 2006-04-25 Outokumu Oyj Thermal spray application of brazing material for manufacture of heat transfer devices
RU2260071C1 (en) * 2004-09-30 2005-09-10 Балдаев Лев Христофорович Method of application of heat-insulating erosion-resistant coat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714390A (en) * 1968-12-31 1973-01-30 Anvar Processes for producing plasma streams within flows of fluids
US3997468A (en) * 1974-02-27 1976-12-14 Pavel Petrovich Maljushevsky Method of creating high and superhigh pressure and an arrangement for dispersing non-metalliferous materials
US3912235A (en) * 1974-12-19 1975-10-14 United Technologies Corp Multiblend powder mixing apparatus
US4818837A (en) * 1984-09-27 1989-04-04 Regents Of The University Of Minnesota Multiple arc plasma device with continuous gas jet

Also Published As

Publication number Publication date
DE602007003869D1 (en) 2010-02-04
JP2007254883A (en) 2007-10-04
CA2577898C (en) 2014-04-01
RU2007106192A (en) 2008-08-27
CA2577898A1 (en) 2007-08-20
US20100252539A1 (en) 2010-10-07
FR2897748A1 (en) 2007-08-24
FR2897748B1 (en) 2008-05-16
EP1821584B1 (en) 2009-12-23
US7763328B2 (en) 2010-07-27
US8449677B2 (en) 2013-05-28
US20070196662A1 (en) 2007-08-23
RU2453627C2 (en) 2012-06-20
JP5498649B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
EP2401232B1 (en) Directed vapor deposition assisted by a coaxial hollow cathode plasma, and related method thereof
US20080220177A1 (en) Reliant Thermal Barrier Coating System and Related Methods and Apparatus of Making the Same
US20130095256A1 (en) Impact and erosion resistant thermal and environmental barrier coatings
EP1504137B1 (en) Method to make nanolaminate thermal barrier coatings
FR2860790A1 (en) TARGET FOR EVAPORATING UNDER ELECTRON BEAM, ITS MANUFACTURING METHOD, THERMAL BARRIER AND COATING OBTAINED FROM A TARGET, AND MECHANICAL PIECE COMPRISING SUCH A COATING
CA2273598C (en) Ceramic thermal barrier coating with low thermal conductivity, deposition process for said ceramic coating, and metal piece protected by this coating
EP1821584B1 (en) Method of depositing a thermal barrier by plasma torch
WO2011075408A1 (en) Methods of laser assisted plasma coating at atmospheric pressure and superalloy substrates comprising coatings made using the same
Kuppusami et al. Status of pulsed laser deposition: challenges and opportunities
Ouyang et al. Laser-assisted plasma coating at atmospheric pressure: production of yttria-stabilized zirconia thermal barriers
CN110670043B (en) Film deposition method based on gas cluster ion beam sputtering
US20110146576A1 (en) Systems for applying a thermal barrier coating to a superalloy substrate
US9023437B2 (en) Ceramic coating deposition
Frodelius Characterization of Ti2AlC Coatings Deposited with High Velocity Oxy-Fuel and Magnetron Sputtering Techniques
Mishra Advanced techniques for surface engineering of industrial materials
Henč-Bartolič et al. The action of a laser on an aluminium target
Tucker Jr et al. On the Surface Engineering Technologies Available to Today’s Engineer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TRICOIRE, AURELIEN

Inventor name: NOGUES, ELISE

Inventor name: VARDELLE, MICHEL

Inventor name: BRAILLARD, FREDERIC

Inventor name: MENUEY, JUSTINE

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20080414

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602007003869

Country of ref document: DE

Date of ref document: 20100204

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100924

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230119

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230121

Year of fee payment: 17

Ref country code: DE

Payment date: 20230119

Year of fee payment: 17