EP1205704A1 - Process for filling a vehicle tank with gas - Google Patents

Process for filling a vehicle tank with gas Download PDF

Info

Publication number
EP1205704A1
EP1205704A1 EP01810985A EP01810985A EP1205704A1 EP 1205704 A1 EP1205704 A1 EP 1205704A1 EP 01810985 A EP01810985 A EP 01810985A EP 01810985 A EP01810985 A EP 01810985A EP 1205704 A1 EP1205704 A1 EP 1205704A1
Authority
EP
European Patent Office
Prior art keywords
gas
vehicle tank
filling
density
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01810985A
Other languages
German (de)
French (fr)
Other versions
EP1205704B1 (en
Inventor
Heinz Mutter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Copco Schweiz AG
Original Assignee
GreenField AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GreenField AG filed Critical GreenField AG
Priority to EP20010810985 priority Critical patent/EP1205704B1/en
Publication of EP1205704A1 publication Critical patent/EP1205704A1/en
Application granted granted Critical
Publication of EP1205704B1 publication Critical patent/EP1205704B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/065Fluid distribution for refueling vehicle fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0139Fuel stations

Definitions

  • the invention relates to a method for filling a vehicle tank with Gas according to the preamble of the independent claim.
  • Gas powered motor vehicles as an alternative to conventional ones Motor vehicles with liquid fuels such as gasoline or Diesel fuels are becoming increasingly important. Today it is typically used as fuel for gas powered vehicles compressed natural gas is used. However, more modern developments are possible also to use gaseous hydrogen as fuel.
  • the vehicle tanks are usually on filled with high pressures.
  • natural gas for example Vehicle tank to a final pressure of about 200 bar based on a Filled reference temperature of 15 ° C.
  • gaseous hydrogen even higher final pressures, for example 600 bar, are sought, which in primarily due to the lower energy density of hydrogen (compared to Natural gas).
  • the Outside temperature taken into account. If you assume that the Ultimate pressure at a reference temperature of 15 ° C for natural gas approximately 200 bar should be at an outside temperature of less than 15 ° C refueling should be stopped at a pressure of less than 200 bar to ensure that when the outside temperature rises in the Vehicle tank no excessive pressure is created. Conversely, at an outside temperature of more than 15 ° C up to a final pressure of more be refueled as 200 bar.
  • the vehicle tanks are so designed that even with fluctuations in the outside temperature not an impermissibly high one Pressure in the tank arises, provided the maximum final pressure at the Refueling corresponds to a pressure of 200 bar at the reference temperature of 15 ° C
  • EP-A-0 653 585 describes a gas refueling method and a corresponding system known that a very simple and especially very quick refueling - comparable to refueling of petrol possible.
  • the vehicle tank with a pressure-resistant line to a delivery device connected and the pressurized gas by means of Dispensing device filled from a storage unit in the vehicle tank.
  • the permissible for the currently prevailing temperature Final pressure calculated.
  • a small amount of gas is put into the vehicle tank filled to equalize the pressure between the vehicle tank and the To effect delivery device.
  • the one in the vehicle tank Initial pressure is in the dispenser after pressure equalization measured and then a certain mass of gas in the Vehicle tank filled.
  • the method for filling a vehicle tank that solves this problem a gas is characterized by the features of the independent claim characterized.
  • the filling process without Interruption.
  • the interruptions in the mass flow as proposed in EP-A-0-653 585, in each case the current pressure prevailing in the vehicle tank in the dispensing device are no longer necessary in the method according to the invention, because the measurement data required for the parameter is online during the ongoing filling in the vehicle tank can be determined. This will make it
  • the method according to the invention is particularly quick and precise without Security concessions are necessary. Security increases even more so, because the level was determined based on those in the vehicle tank Measurement data is determined. Data can be recorded in the vehicle tank an even more precise determination of the level, so that the allowed Limits for filling can be used optimally because they are be fully utilized without the risk of exceeding the There are security limits.
  • the final value is preferably the parameter when it is reached the Filling is stopped, regardless of the temperature, that is, it will selected a parameter that independent of the level of the vehicle tank represented by temperature.
  • the parameter is particularly preferred determines the density of the gas in the vehicle tank.
  • a final value can be specified in the vehicle tank, namely the maximum allowed density or operational density, which is independent of each prevailing outside temperature when filling.
  • the temperature-independent final value for the parameter has the advantage that it a temperature-corrected value for the final pressure is no longer necessary to calculate the fueling.
  • the Parameter is determined before the vehicle tank is filled with gas, so that the current level of the vehicle tank before the start of the Filling is known as the initial value.
  • This initial value is used determined during the refueling the measurement technology in the vehicle tank current level with the data determined in the dispenser to compare. If there are discrepancies in this comparison, this indicates on an error and appropriate countermeasures can be taken to be hit.
  • the dispenser Mass of the gas released recorded by measurement From the released gas mass is then taking into account the initial value determines a control variable corresponding to the parameter, which The control variable is compared with the characteristic variable, and there is one Error message or canceling the filling if the deviation a specifiable between the parameter and the control variable Limit exceeded.
  • This measure allows operational safety at Increase gas refueling significantly, because there are two each different determinations of the current fill level of the vehicle tank. On the one hand, it is arranged in the vehicle tank Sensor device the characteristic representative of the current level is determined and on the other hand in the dispenser on the basis of there metrologically recorded mass of the gas emitted that of Characteristic corresponding control variable determined. By the respective Comparing these two sizes, errors in filling, For example, detect leaks early and reliably.
  • the im Sensor device arranged vehicle tank a temperature sensor and a pressure sensor with which the temperature and pressure of the gas in the Tank is measured. From this, the density of the gas is then as Characteristic determined.
  • the inventive method is suitable for a variety of Gas refueling systems and especially for those with which compressed natural gas or gaseous hydrogen filled in a tank becomes.
  • Fig. 1 shows a schematic representation of the essential parts of a Gas refueling system for carrying out an embodiment of the Method according to the invention, all of which is identified by the reference number 1 is designated.
  • a gas-powered motor vehicle 30 is indicated which has a vehicle tank 31, which is designed as a pressure vessel is.
  • the vehicle tank 31 serves as a storage container for a gaseous one Fuel, for example compressed natural gas or gaseous Hydrogen, which is required for the operation of the motor vehicle 30.
  • Fuel for example compressed natural gas or gaseous Hydrogen
  • the final pressure in the case of natural gas, it is for example, it is customary to choose the final pressure so that it corresponds to a pressure of corresponds to approximately 200 bar at a reference temperature of 15 ° C. In the event of the final pressure of hydrogen is usually chosen higher, for example 600 bar based on the reference temperature 15 ° C.
  • the vehicle tank 31 is connected via a pressure-resistant connecting line 36 an externally accessible filler neck 37 connected here at the Outside of the motor vehicle 30 is arranged.
  • a sensor device In the vehicle tank 31, a sensor device is provided, which in the An embodiment described here a pressure sensor 32 and a Includes temperature sensor 33 with which the current pressure and the current Temperature in the vehicle tank 31 can be measured.
  • the sensors 32, 33 are connected via lines 35 to an outside of the vehicle tank 31, but connected in the motor vehicle 30 provided electronics module 34.
  • the Electronics module 34 receives those detected by sensors 32, 33 Measured values and processes them. Furthermore, the electronics module 34 serves Transmission of data to the gas refueling system 1.
  • the volume of the vehicle tank 31 is stored in a memory 38, which is a constant size.
  • the volume can be about one Signal line are transmitted to the electronics module 34.
  • the volume of the vehicle tank 31 directly in the Store electronic module 34.
  • the gas refueling system 1 shown only with its essential parts comprises a delivery device 2 and a stationary storage unit 3, in the gas for refueling, for example natural gas or gaseous Hydrogen, is stored. Furthermore, one is not shown Compression device is provided, which the storage unit 3 at Refilled with gas as needed.
  • the storage unit usually comprises several storage tanks, here three storage tanks, each of which has one separate pressure-resistant connecting line 4a, 4b or 4c with the Dispenser 2 is connected.
  • the dispensing device 2 comprises a switching device 5 to which the three connecting lines 4a, 4b and 4c are connected.
  • a pressure-resistant line 7 over Valve, which is preferably designed as a solenoid valve 6, and via a the mass flow meter 8 downstream of the solenoid valve 6 Output 9 of the dispensing device 2.
  • a pressure-resistant Line 10 connected to the other end with a coupling 11 which is provided with the filler neck 37 of the motor vehicle 30 is connectable.
  • the delivery device further comprises a communication module 13, a Evaluation and control unit 12 and an operating module 14 Operating module 14, the gas refueling system by appropriate Inputs are put into operation or operated.
  • the operating module 14 further comprises a display unit on which, for. B. the mass of refueled gas or the price of the gas.
  • the communication module 13 receives data from the electronics module 34 of the motor vehicle 30 and passes this via a signal line to the Evaluation and control unit 12 further.
  • the evaluation and control unit 12 is also connected to the mass flow meter 8 via signal lines as well as with the solenoid valve 6.
  • the solenoid valve 6 is an electromagnetically operated valve, which by Signals that come from the evaluation and control unit 12 are controlled becomes.
  • the flow connection for the gas can be made by means of the solenoid valve 6 opened between the switching device 5 and the output 9 or are closed, so that by actuating the solenoid valve 6 Filling process can be started or ended.
  • the mass flow meter 8 is preferably a measuring device based on the Coriolis principle is based.
  • Such Coriolis mass flow meters per se are well known. They measure the mass of the gas which is given when refueling.
  • the switching device 5 serves one of the connecting lines 4a or 4b or 4c to be connected to line 7.
  • the Connection line 4a connected to line 7 and drops during the Refueling the pressure in the part of the connecting line 4a Storage tank of the storage unit 3 so far that the mass flow of the Gas is too low, so the switching device 5 to one other storage tank can be switched over by connecting line 7 with the Connection line 4b or 4c is connected.
  • the communication module 13 receives data, for example measured values or the volume of the vehicle tank 31 from the electronics module 34 of the Motor vehicle 30.
  • the communication module 13 with the Electronics module 34 signal connected. This can be done using a Signal line 23 take place. It is also possible to connect the signal line 23 to the To integrate pressure-resistant line 10, for example the signal line 23 to be arranged on the outside of the line 10. It is also possible to Signal connection between the electronics module 34 and the To design communication module 13 wirelessly, for example by means of Radio or optical methods such as infrared signals.
  • the method according to the invention is based on using the Sensor device which is arranged in the vehicle tank 31 while to determine the current value of a parameter during filling, which is representative of the current fill level of the vehicle tank 31 is, that is, the current level of the vehicle tank 31 is by Measurements in the vehicle tank 31 itself determined.
  • the parameter is the Density ⁇ of the gas used in the vehicle tank 31.
  • This also as Operating density designated characteristic has the advantage that a maximum permissible end value can be specified, which is independent of the prevailing temperature. So it is no longer necessary one of the outside temperature prevailing during refueling dependent pressure at which refueling is terminated.
  • the temperature-dependent final pressure for the filling z. B. calculated from the isochoric behavior of the gas become.
  • a maximum allowed Final value for the density of the gas can be specified, and the filling can then - regardless of the prevailing outside temperature - continue until this final value for the density in Vehicle tank 31 is reached.
  • the one that is currently in the vehicle tank is constantly changing Density of the gas determined.
  • this density in each case in two different ways to determine, namely on the one hand with the help of the measured values of the Vehicle tank 31 arranged sensors 32,33 and on the other hand with the help the gas mass dispensed by the dispenser 2, which by means of of the mass flow meter 8 is measured in the dispensing device 2. If these two values for the density deviate more than a specifiable one Limit value from each other, this indicates an error. For example, a leak or one of the sensors may have occurred 32.33 is not working properly. By means of these two Determination of the density can also be dangerous conditions, such as for example, overfilling of the vehicle tank 31 can be avoided.
  • ⁇ T m T / V
  • m T denotes the mass of the gas in the vehicle tank 31
  • V the volume of the vehicle tank 31, which is a constant variable.
  • the pressure-resistant line 10 of the dispensing device 2 is connected to the filler neck 37 of the motor vehicle 30 by means of the coupling 11. Furthermore, the signal line 23 is optionally connected on the one hand to the electronics module 34 and on the other hand to the communication module 13.
  • the pressure sensor 32 or the temperature sensor 33 Before the vehicle tank 31 is filled with gas, the pressure sensor 32 or the temperature sensor 33 first measures the initial pressure p 0 or the initial temperature T 0 that prevail in the vehicle tank 31 before the start of filling (step 101 in FIG. 2 ). The density ⁇ 0 is then determined in step 102 from p 0 , T 0 and the corresponding value for the real gas factor z as an initial value. ⁇ 0 indicates the current density of the gas in the vehicle tank 31 before the start of filling.
  • the electronics module 34 transmits the value of ⁇ 0 and the volume V of the vehicle tank 31 to be filled to the communication module 13 of the dispensing device 2.
  • the initial value m 0 thus indicates the mass of the gas that is present in the vehicle tank 31 before the start of filling.
  • step 103 The evaluation and control unit 12 opens the solenoid valve 6 and the gas can flow from the storage unit 3 through the mass flow meter 8, the pressure-resistant line 10 and the connecting line 36 into the vehicle tank 31.
  • the pressure sensor 32 and the temperature sensor 33 continuously or at short intervals measure the current pressure p T or the current temperature T T in the vehicle tank 31 (step 104). From these two values, the current value ⁇ T for the density of the gas in the vehicle tank 31 is determined in step 105 in accordance with the relationship given further above and transmitted to the dispensing device 2.
  • the mass m G of the released gas is continuously measured in the dispensing device 2 by means of the mass flow meter 8 (step 106). This is done, for example, at a rate of about a hundred pulses (measurements) per kilogram of gas released.
  • step 108 the control variable ⁇ m is then compared with the density ⁇ T determined in the vehicle tank 31. If the deviation between the control variable ⁇ m and the density ⁇ T determined in the vehicle tank exceeds a predeterminable limit value D, the filling is terminated (step 110) and / or an error warning is given. Otherwise, it is checked in step 109 whether the density p of the gas in the vehicle tank 31 has reached a predeterminable final value ⁇ E. Since step 109 already ensures that ⁇ T and ⁇ m differ by a maximum of D, it is in principle irrelevant whether ⁇ T or ⁇ m are used for the comparison with the final value ⁇ E.
  • the mean or a weighted mean of ⁇ T and ⁇ m can also be used for the comparison with ⁇ E. If the density p has reached the final value ⁇ E , the filling is ended in step 110, otherwise the filling is continued.
  • An advantage of the described method is that the maximum permissible density or operating density ⁇ E for a given gas is independent of the outside temperature at which the refueling takes place.
  • Another advantage, particularly in terms of security, is that the density of the gas in the vehicle tank in two different ways is determined.
  • the electronics module 34 contains the measured values or data of the temperature sensor 33 and the pressure sensor 32, that is to say, for. B. p 0 , T 0 , p T , T T , transmitted to the dispensing device 2 and the determination of ⁇ 0 and ⁇ T then takes place there.

Abstract

The method involves determining the instantaneous value of a parameter representing the instantaneous state of filling of a vehicle fuel tank (31) during a gas filling using a temperature sensor (33) and a pressure sensor (32) which are arranged in the vehicle fuel tank. An Independent claim is also included for a gas refueling plant.

Description

Die Erfindung betrifft ein Verfahren zum Befüllen eines Fahrzeugtanks mit Gas gemäss dem Oberbegriff des unabhängigen Patentanspruchs.The invention relates to a method for filling a vehicle tank with Gas according to the preamble of the independent claim.

Gasbetriebene Kraftfahrzeuge als Alternative zu konventionellen Kraftfahrzeugen, welche mit flüssigen Brennstoffen wie Benzin oder Dieselkraftstoff betrieben werden, gewinnen zunehmend an Bedeutung. Heutzutage wird als Brennstoff für gasbetriebene Fahrzeuge typischerweise komprimiertes Erdgas verwendet. Modernere Entwicklungen gehen jedoch auch dahin, gasförmigen Wasserstoff als Brennstoff zu verwenden.Gas powered motor vehicles as an alternative to conventional ones Motor vehicles with liquid fuels such as gasoline or Diesel fuels are becoming increasingly important. Nowadays it is typically used as fuel for gas powered vehicles compressed natural gas is used. However, more modern developments are possible also to use gaseous hydrogen as fuel.

Um den gasbetriebenen Fahrzeugen eine befriedigende Reichweite zu ermöglichen und gleichzeitig die Abmessungen des Fahrzeugtanks in vernünftigen Grenzen zu halten, werden die Fahrzeugtanks üblicherweise auf hohe Drücke befüllt. Im Falle von Erdgas wird beispielsweise der Fahrzeugtank auf einen Enddruck von etwa 200 bar bezogen auf eine Referenztemperatur von 15°C befüllt. Im Falle von gasförmigem Wasserstoff werden noch höhere Enddrücke, beispielsweise 600 bar, angestrebt, was in erster Linie an der geringeren Energiedichte von Wasserstoff (verglichen mit Erdgas) liegt.In order to achieve a satisfactory range for gas-powered vehicles enable and at the same time the dimensions of the vehicle tank in To keep reasonable limits, the vehicle tanks are usually on filled with high pressures. In the case of natural gas, for example Vehicle tank to a final pressure of about 200 bar based on a Filled reference temperature of 15 ° C. In the case of gaseous hydrogen even higher final pressures, for example 600 bar, are sought, which in primarily due to the lower energy density of hydrogen (compared to Natural gas).

Für eine sichere Gasbetankung wird bei der Befüllung unter anderem die Aussentemperatur berücksichtigt. Geht man nämlich davon aus, dass der Enddruck bei einer Referenztemperatur von 15°C für Erdgas ungefähr 200 bar betragen soll, so muss bei einer Aussentemperatur von weniger als 15°C die Betankung bei einem Druck von weniger als 200 bar beendet werden, um zu gewährleisten, dass bei einem Ansteigen der Aussentemperatur in dem Fahrzeugtank kein unzulässig hoher Druck entsteht. Umgekehrt kann bei einer Aussentemperatur von mehr als 15°C bis zu einem Enddruck von mehr als 200 bar betankt werden. Die Fahrzeugtanks sind also derart ausgelegt, dass auch bei Schwankungen der Aussentemperatur kein unzulässig hoher Druck im Tank entsteht, vorausgesetzt der maximale Enddruck bei der Betankung endspricht einem Druck von 200 bar bei der Referenztemperatur von 15°CFor safe gas refueling, the Outside temperature taken into account. If you assume that the Ultimate pressure at a reference temperature of 15 ° C for natural gas approximately 200 bar should be at an outside temperature of less than 15 ° C refueling should be stopped at a pressure of less than 200 bar to ensure that when the outside temperature rises in the Vehicle tank no excessive pressure is created. Conversely, at an outside temperature of more than 15 ° C up to a final pressure of more be refueled as 200 bar. The vehicle tanks are so designed that even with fluctuations in the outside temperature not an impermissibly high one Pressure in the tank arises, provided the maximum final pressure at the Refueling corresponds to a pressure of 200 bar at the reference temperature of 15 ° C

Aus der EP-A-0 653 585 ist beispielsweise ein Gasbetankungsverfahren und eine entsprechende Anlage bekannt, die ein sehr einfaches und insbesondere auch sehr schnelles Betanken - vergleichbar mit dem Betanken von Benzin -ermöglichen. Gemäss dem dort vorgeschlagenen Verfahren wird der Fahrzeugtank mit einer druckfesten Leitung an eine Abgabevorrichtung angeschlossen und das unter Druck stehende Gas mittels der Abgabevorrichtung aus einer Speichereinheit in den Fahrzeugtank gefüllt. Zunächst wird der für die momentan herrschende Temperatur zulässige Enddruck berechnet. Dann wird eine kleine Menge Gas in den Fahrzeugtank eingefüllt, um einen Druckausgleich zwischen dem Fahrzeugtank und der Abgabevorrichtung zu bewirken. Der im Fahrzeugtank herrschende Anfangsdruck wird nach dem Druckausgleich in der Abgabevorrichtung gemessen und anschliessend eine bestimmte Masse an Gas in den Fahrzeugtank gefüllt. Danach wird der Massenstrom des Gases unterbrochen und wiederum der im Fahrzeugtank herrschende Druck in der Abgabevorrichtung gemessen. Aus diesen Druckwerten wird ein Zusammenhang zwischen der Masse des abgegebenen Gases und dem Druck im Fahrzeugtank bestimmt. Anhand dieses Zusammenhangs wird eine Masse von Gas berechnet, derart, dass zum Befüllen des Fahrzeugtanks auf den Enddruck mindestens eine weitere Masse Gas zugeführt werden muss. Nachdem die berechnete Masse Gas dem Fahrzeugtank zugeführt worden ist, wird der Massenstrom wieder unterbrochen und der im Fahrzeugtank herrschende Druck in der Abgabevorrichtung bestimmt. Die Vorgänge des Berechnens einer zusätzlichen Masse Gas, des Zuführens dieses Gasmasse und des Unterbrechens des Massenstroms zur Druckbestimmung werden mehrmals wiederholt, bis im Fahrzeugtank der temperaturkorrigierte Enddruck erreicht ist.EP-A-0 653 585, for example, describes a gas refueling method and a corresponding system known that a very simple and especially very quick refueling - comparable to refueling of petrol possible. According to the method proposed there the vehicle tank with a pressure-resistant line to a delivery device connected and the pressurized gas by means of Dispensing device filled from a storage unit in the vehicle tank. First, the permissible for the currently prevailing temperature Final pressure calculated. Then a small amount of gas is put into the vehicle tank filled to equalize the pressure between the vehicle tank and the To effect delivery device. The one in the vehicle tank Initial pressure is in the dispenser after pressure equalization measured and then a certain mass of gas in the Vehicle tank filled. Then the mass flow of the gas is interrupted and again the pressure in the vehicle tank Dispenser measured. These pressure values become a Relationship between the mass of the gas released and the Pressure determined in the vehicle tank. Based on this connection, a Mass of gas calculated so that to fill up the vehicle tank the final pressure must be supplied with at least one further mass of gas. After the calculated mass of gas has been fed to the vehicle tank the mass flow is interrupted again and that in the vehicle tank prevailing pressure in the dispenser is determined. The operations of the Computing an additional mass of gas, supplying this mass of gas and the interruption of the mass flow for pressure determination Repeated several times until the temperature corrected in the vehicle tank Final pressure is reached.

Ausgehend von diesem Stand der Technik, ist es eine Aufgabe der Erfindung, ein anderes Verfahren zum Befüllen eines Fahrzeugtanks mit einem Gas vorzuschlagen, welches eine noch schnellere und genauere Betankung ermöglicht, ohne dass dafür Zugeständnisse an die Sicherheit vonnöten sind. Das Verfahren soll auch für sehr hohe Enddrücke anwendbar sein, wie sie bei der Betankung mit gasförmigem Wasserstoff angestrebt werden.Based on this state of the art, it is a task of Invention, another method for filling a vehicle tank with propose a gas that is even faster and more accurate Refueling allows without making concessions to safety are necessary. The method should also be applicable for very high final pressures be what they are aiming for when refueling with gaseous hydrogen become.

Das diese Aufgabe lösende Verfahren zum Befüllen eines Fahrzeugtanks mit einem Gas ist durch die Merkmale des unabhängigen Anspruchs gekennzeichnet.The method for filling a vehicle tank that solves this problem a gas is characterized by the features of the independent claim characterized.

Erfindungsgemäss wird also ein Verfahren zum Befüllen eines Fahrzeugtanks mit einem Gas vorgeschlagen, bei welchem der Fahrzeugtank mit einer druckfesten Leitung an eine Abgabevorrichtung angeschlossen wird und das unter Druck stehende Gas mittels der Abgabevorrichtung aus einer Speichereinheit in den Fahrzeugtank gefüllt wird. Das Verfahren umfasst die folgenden Schritte:

  • mit Hilfe einer Sensoreinrichtung, welche in dem Fahrzeugtank angeordnet ist, wird während der Befüllung der momentane Wert einer Kenngrösse bestimmt, welche repräsentativ für den momentanen Füllstand des Fahrzeugtanks ist,
  • die Befüllung wird beendet, wenn die Kenngrösse einen vorgebbaren Endwert erreicht hat.
According to the invention, therefore, a method for filling a vehicle tank with a gas is proposed, in which the vehicle tank is connected to a delivery device with a pressure-resistant line and the pressurized gas is filled into the vehicle tank from the storage unit by means of the delivery device. The process includes the following steps:
  • with the aid of a sensor device which is arranged in the vehicle tank, the instantaneous value of a parameter which is representative of the instantaneous fill level of the vehicle tank is determined during the filling,
  • the filling is ended when the parameter has reached a definable end value.

Da die Kenngrösse, welche repräsentativ für den momentanen Füllstand des Tanks ist, mit Hilfe einer Sensoranordnung bestimmt wird, die im Fahrzeugtank selbst angeordnet ist, kann der Befüllungsvorgang ohne Unterbrechung durchgeführt werden. Die Unterbrechungen des Massestroms wie sie in der EP-A-0-653 585 vorgeschlagenen werden, um jeweils den aktuellen im Fahrzeugtank herrschenden Druck in der Abgabevorrichtung zu ermitteln, sind bei dem erfindungsgemässen Verfahren nicht mehr notwendig, weil die für die Kenngrösse benötigten Messdaten online während der laufenden Befüllung im Fahrzeugtank ermittelt werden. Dadurch wird das erfindungsgemässe Verfahren besonders schnell und genau, ohne dass Zugeständnisse an die Sicherheit notwendig sind. Die Sicherheit erhöht sich sogar eher noch, weil der Füllstand anhand von im Fahrzeugtank ermittelten Messdaten bestimmt wird. Die Erfassung der Daten im Fahrzeugtank erlaubt eine noch genauerer Bestimmung des Füllstands, sodass die erlaubten Grenzen für die Befüllung optimaler ausgenützt werden können, weil sie sich voll ausschöpfen lassen, ohne dass die Gefahr einer Überschreitung der Sicherheitsgrenzen besteht.Since the parameter, which is representative of the current level of the Tanks is determined with the help of a sensor arrangement which in the Vehicle tank itself is arranged, the filling process without Interruption. The interruptions in the mass flow as proposed in EP-A-0-653 585, in each case the current pressure prevailing in the vehicle tank in the dispensing device are no longer necessary in the method according to the invention, because the measurement data required for the parameter is online during the ongoing filling in the vehicle tank can be determined. This will make it The method according to the invention is particularly quick and precise without Security concessions are necessary. Security increases even more so, because the level was determined based on those in the vehicle tank Measurement data is determined. Data can be recorded in the vehicle tank an even more precise determination of the level, so that the allowed Limits for filling can be used optimally because they are be fully utilized without the risk of exceeding the There are security limits.

Vorzugsweise ist der Endwert der Kenngrösse, bei dessen Erreichen die Befüllung beendet wird, unabhängig von der Temperatur, das heisst es wird eine Kenngrösse gewählt, die den Füllstand des Fahrzeugtanks unabhängig von der Temperatur repräsentiert. Besonders bevorzugt wird als Kenngrösse die Dichte des Gases im Fahrzeugtank bestimmt. Für die Dichte des Gases im Fahrzeugtank kann ein Endwert angegeben werden, nämlich die maximal erlaubte Dichte oder Betriebsdichte, der unabhängig von der jeweils herrschenden Aussentemperatur bei der Befüllung ist. Der temperaturunabhängige Endwert für die Kenngrösse hat den Vorteil, dass es nicht mehr notwendig ist, einen temperaturkorrigierten Wert für den Enddruck der Betankung zu berechnen.The final value is preferably the parameter when it is reached the Filling is stopped, regardless of the temperature, that is, it will selected a parameter that independent of the level of the vehicle tank represented by temperature. The parameter is particularly preferred determines the density of the gas in the vehicle tank. For the density of the gas A final value can be specified in the vehicle tank, namely the maximum allowed density or operational density, which is independent of each prevailing outside temperature when filling. The temperature-independent final value for the parameter has the advantage that it a temperature-corrected value for the final pressure is no longer necessary to calculate the fueling.

Eine weitere vorteilhafte Massnahme besteht darin, dass zunächst die Kenngrösse bestimmt wird, bevor der Fahrzeugtank mit Gas befüllt wird, sodass der aktuelle Füllstand des Fahrzeugtanks vor dem Beginn der Befüllung als Anfangswert bekannt ist. Dieser Anfangswert dient dazu, während der Betankung den messtechnisch im Fahrzeugtank ermittelten aktuellen Füllstand mit den in der Abgabevorrichtung bestimmten Daten zu vergleichen. Kommt es bei diesem Vergleich zu Diskrepanzen, so deutet dies auf einen Fehler hin und es können entsprechende Gegenmassnahmen getroffen werden. Wie allgemein üblich, wird in der Abgabevorrichtung die Masse des abgegebenen Gases messtechnisch erfasst. Aus der abgegebenen Gasmasse wird dann unter Berücksichtigung des Anfangswerts eine der Kenngrösse entsprechende Kontrollgrösse bestimmt, die Kontrollgrösse wird jeweils mit der Kenngrösse verglichen, und es erfolgt eine Fehlermeldung oder das Abbrechen der Befüllung, wenn die Abweichung zwischen der Kenngrösse und der Kontrollgrösse einen vorgebbaren Grenzwert überschreitet.Another advantageous measure is that first the Parameter is determined before the vehicle tank is filled with gas, so that the current level of the vehicle tank before the start of the Filling is known as the initial value. This initial value is used determined during the refueling the measurement technology in the vehicle tank current level with the data determined in the dispenser to compare. If there are discrepancies in this comparison, this indicates on an error and appropriate countermeasures can be taken to be hit. As is common practice in the dispenser Mass of the gas released recorded by measurement. From the released gas mass is then taking into account the initial value determines a control variable corresponding to the parameter, which The control variable is compared with the characteristic variable, and there is one Error message or canceling the filling if the deviation a specifiable between the parameter and the control variable Limit exceeded.

Durch diese Massnahme lässt sich die Betriebssicherheit bei der Gasbetankung deutlich erhöhen, denn es erfolgen jeweils zwei unterschiedliche Bestimmungen des aktuellen Füllstands des Fahrzeugtanks. Zum einen wird mit Hilfe der im Fahrzeugtank angeordneten Sensoreinrichtung die für den aktuellen Füllstand repräsentative Kenngrösse ermittelt und zum anderen wird in der Abgabevorrichtung anhand der dort messtechnisch erfassten Masse des abgegebenen Gases die der Kenngrösse entsprechende Kontrollgrösse bestimmt. Durch den jeweiligen Vergleich dieser beiden Grössen lassen sich Fehler bei der Befüllung, beispielsweise Leckagen, frühzeitig und zuverlässig erkennen.This measure allows operational safety at Increase gas refueling significantly, because there are two each different determinations of the current fill level of the vehicle tank. On the one hand, it is arranged in the vehicle tank Sensor device the characteristic representative of the current level is determined and on the other hand in the dispenser on the basis of there metrologically recorded mass of the gas emitted that of Characteristic corresponding control variable determined. By the respective Comparing these two sizes, errors in filling, For example, detect leaks early and reliably.

Gemäss einer besonders bevorzugten Ausführungsform umfasst die im Fahrzeugtank angeordnete Sensoreinrichtung einen Temperatursensor und einen Drucksensor, mit welchen die Temperatur und der Druck des Gases im Tank gemessen wird. Daraus wird dann jeweils die Dichte des Gases als Kenngrösse bestimmt.According to a particularly preferred embodiment, the im Sensor device arranged vehicle tank a temperature sensor and a pressure sensor with which the temperature and pressure of the gas in the Tank is measured. From this, the density of the gas is then as Characteristic determined.

Das erfindungsgemässe Verfahren eignet sich für eine Vielzahl von Gasbetankungsanlagen und insbesondere für solche, mit denen komprimiertes Erdgas oder gasförmiger Wasserstoff in einen Tank gefüllt wird.The inventive method is suitable for a variety of Gas refueling systems and especially for those with which compressed natural gas or gaseous hydrogen filled in a tank becomes.

Weitere vorteilhafte Massnahmen und bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.Further advantageous measures and preferred configurations of the Invention result from the dependent claims.

Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels und anhand der Zeichnung näher erläutert. In der schematischen, nicht massstäblichen Zeichnung zeigen:

Fig. 1:
die wesentlichen Teile einer Gasbetankungsanlage zur Durchführung eines Ausführungsbeispiels des erfindungsgemässen Verfahren sowie einen zu befüllenden Fahrzeugtank in schematischer Darstellung, und
Fig. 2:
ein Flussdiagramm zur Veranschaulichung des Ausführungsbeispiels des erfindungsgemässen Verfahrens.
The invention is explained in more detail below using an exemplary embodiment and the drawing. The schematic drawing, not to scale, shows:
Fig. 1:
the essential parts of a gas refueling system for performing an embodiment of the inventive method and a vehicle tank to be filled in a schematic representation, and
Fig. 2:
a flowchart to illustrate the embodiment of the inventive method.

Fig. 1 zeigt in einer schematischen Darstellung die wesentlichen Teile einer Gasbetankungsanlage zur Durchführung eines Ausführungsbeispiels des erfindungsgemässen Verfahrens, die gesamthaft mit dem Bezugszeichen 1 bezeichnet ist. Ferner ist ein gasbetriebenes Kraftfahrzeug 30 angedeutet, welches einen Fahrzeugtank 31 aufweist, der als Druckbehälter ausgestaltet ist. Der Fahrzeugtank 31 dient als Vorratsbehälter für einen gasförmige Brennstoff, beispielsweise komprimiertes Erdgas oder gasförmigen Wasserstoff, der für den Betrieb des Kraftfahrzeugs 30 benötigt wird. Es versteht sich, dass der Fahrzeugtank 31 so ausgestaltet ist, dass er dem Enddruck sowie den üblichen Sicherheitsreserven problemlos standhält. Mit dem Enddruck ist dabei der Druck gemeint, bis auf welchen der Fahrzeugtank 31 bei der Betankung befüllt wird. Im Falle von Erdgas ist es beispielsweise üblich, den Enddruck so zu wählen, dass er einem Druck von ungefähr 200 bar bei einer Referenztemperatur von 15°C entspricht. Im Falle von Wasserstoff wird der Enddruck normalerweise höher gewählt, beispielsweise 600 bar bezogen auf die Referenztemperatur 15°C.Fig. 1 shows a schematic representation of the essential parts of a Gas refueling system for carrying out an embodiment of the Method according to the invention, all of which is identified by the reference number 1 is designated. Furthermore, a gas-powered motor vehicle 30 is indicated which has a vehicle tank 31, which is designed as a pressure vessel is. The vehicle tank 31 serves as a storage container for a gaseous one Fuel, for example compressed natural gas or gaseous Hydrogen, which is required for the operation of the motor vehicle 30. It it goes without saying that the vehicle tank 31 is designed such that it can End pressure and the usual safety reserves easily withstands. With the final pressure means the pressure to which the Vehicle tank 31 is filled during refueling. In the case of natural gas, it is for example, it is customary to choose the final pressure so that it corresponds to a pressure of corresponds to approximately 200 bar at a reference temperature of 15 ° C. In the event of the final pressure of hydrogen is usually chosen higher, for example 600 bar based on the reference temperature 15 ° C.

Der Fahrzeugtank 31 ist über eine druckfeste Verbindungsleitung 36 mit einem von aussen zugänglichen Einfüllstutzen 37 verbunden, der hier an der Aussenseite des Kraftfahrzeugs 30 angeordnet ist.The vehicle tank 31 is connected via a pressure-resistant connecting line 36 an externally accessible filler neck 37 connected here at the Outside of the motor vehicle 30 is arranged.

Im Fahrzeugtank 31 ist eine Sensoreinrichtung vorgesehen, welche bei dem hier beschriebenen Ausführungsbeispiel einen Drucksensor 32 und einen Temperatursensor 33 umfasst, mit denen der aktuelle Druck und die aktuelle Temperatur im Fahrzeugtank 31 messtechnisch erfassbar sind. Die Sensoren 32,33 sind über Leitungen 35 mit einem ausserhalb des Fahrzeugtanks 31, aber im Kraftfahrzeug 30 vorgesehenen Elektronikmodul 34 verbunden. Das Elektronikmodul 34 empfängt die von den Sensoren 32,33 erfassten Messwerte und verarbeitet diese. Ferner dient das Elektronikmodul 34 der Übermittlung von Daten an die Gasbetankungsanlage 1.In the vehicle tank 31, a sensor device is provided, which in the An embodiment described here a pressure sensor 32 and a Includes temperature sensor 33 with which the current pressure and the current Temperature in the vehicle tank 31 can be measured. The sensors 32, 33 are connected via lines 35 to an outside of the vehicle tank 31, but connected in the motor vehicle 30 provided electronics module 34. The Electronics module 34 receives those detected by sensors 32, 33 Measured values and processes them. Furthermore, the electronics module 34 serves Transmission of data to the gas refueling system 1.

In einem Speicher 38 ist das Volumen des Fahrzeugtanks 31 abgespeichert, welches eine konstante Grösse ist. Das Volumen kann über eine Signalleitung an das Elektronikmodul 34 übermittelt werden. Natürlich ist es auch möglich, das Volumen des Fahrzeugtanks 31 direkt in dem Elektronikmodul 34 abzuspeichern.The volume of the vehicle tank 31 is stored in a memory 38, which is a constant size. The volume can be about one Signal line are transmitted to the electronics module 34. Of course it is also possible the volume of the vehicle tank 31 directly in the Store electronic module 34.

Die nur mit ihren wesentlichen Teilen dargestellte Gasbetankungsanlage 1 umfasst eine Abgabevorrichtung 2 und eine stationäre Speichereinheit 3, in der das Gas für die Betankung, also beispielsweise Erdgas oder gasförmiger Wasserstoff, gespeichert ist. Ferner ist eine nicht näher dargestellte Kompressionseinrichtung vorgesehen, welche die Speichereinheit 3 bei Bedarf wieder mit Gas auffüllt. Üblicherweise umfasst die Speichereinheit mehrere Speichertanks, hier drei Speichertanks, von denen jeder über eine separate druckfeste Verbindungsleitung 4a, 4b bzw. 4c mit der Abgabevorrichtung 2 verbunden ist.The gas refueling system 1 shown only with its essential parts comprises a delivery device 2 and a stationary storage unit 3, in the gas for refueling, for example natural gas or gaseous Hydrogen, is stored. Furthermore, one is not shown Compression device is provided, which the storage unit 3 at Refilled with gas as needed. The storage unit usually comprises several storage tanks, here three storage tanks, each of which has one separate pressure-resistant connecting line 4a, 4b or 4c with the Dispenser 2 is connected.

Die Abgabevorrichtung 2 umfasst eine Umschalteinrichtung 5, an welche die drei Verbindungsleitungen 4a,4b und 4c angeschlossen sind. Von der Umschalteinrichtung 5 erstreckt sich eine druckfeste Leitung 7 über ein Ventil, das vorzugsweise als Magnetventil 6 ausgestaltet ist, und über einen dem Magnetventil 6 nachgeschalteten Massendurchflussmesser 8 zum Ausgang 9 der Abgabevorrichtung 2. An den Ausgang 9 ist eine druckfeste Leitung 10 angeschlossen, die an ihrem anderen Ende mit einer Kupplung 11 versehen ist, welche mit dem Einfüllstutzen 37 des Kraftfahrzeugs 30 verbindbar ist.The dispensing device 2 comprises a switching device 5 to which the three connecting lines 4a, 4b and 4c are connected. Of the Switching device 5 extends a pressure-resistant line 7 over Valve, which is preferably designed as a solenoid valve 6, and via a the mass flow meter 8 downstream of the solenoid valve 6 Output 9 of the dispensing device 2. At the output 9 is a pressure-resistant Line 10 connected to the other end with a coupling 11 which is provided with the filler neck 37 of the motor vehicle 30 is connectable.

Die Abgabevorrichtung umfasst ferner ein Kommunikationsmodul 13, eine Auswerte- und Regeleinheit 12 sowie ein Bedienmodul 14. Über das Bedienmodul 14 kann die Gasbetankungsanlage durch entsprechende Eingaben in Betrieb gesetzt bzw. bedient werden. Das Bedienmodul 14 umfasst ferner eine Anzeigeeinheit, auf welcher z. B. die Masse des getankten Gases oder der Preis für das Gas angezeigt werden.The delivery device further comprises a communication module 13, a Evaluation and control unit 12 and an operating module 14 Operating module 14, the gas refueling system by appropriate Inputs are put into operation or operated. The operating module 14 further comprises a display unit on which, for. B. the mass of refueled gas or the price of the gas.

Das Kommunikationsmodul 13 empfängt Daten von dem Elektronikmodul 34 des Kraftfahrzeugs 30 und leitet diese über eine Signalleitung an die Auswerte- und Regeleinheit 12 weiter. Die Auswerte- und Regeleinheit 12 ist ferner über Signalleitungen mit dem Massendurchflussmesser 8 verbunden sowie mit dem Magnetventil 6. The communication module 13 receives data from the electronics module 34 of the motor vehicle 30 and passes this via a signal line to the Evaluation and control unit 12 further. The evaluation and control unit 12 is also connected to the mass flow meter 8 via signal lines as well as with the solenoid valve 6.

Das Magnetventil 6 ist ein elektromagnetisch betätigtes Ventil, welches durch Signale, die von der Auswerte- und Regeleinheit 12 kommen, angesteuert wird. Mittels des Magnetventils 6 kann die Strömungsverbindung für das Gas zwischen der Umschalteinrichtung 5 und dem Ausgang 9 geöffnet bzw. geschlossen werden, sodass durch Betätigung des Magnetventils 6 der Befüllungsvorgang begonnen bzw. beendet werden kann.The solenoid valve 6 is an electromagnetically operated valve, which by Signals that come from the evaluation and control unit 12 are controlled becomes. The flow connection for the gas can be made by means of the solenoid valve 6 opened between the switching device 5 and the output 9 or are closed, so that by actuating the solenoid valve 6 Filling process can be started or ended.

Der Massendurchflussmesser 8 ist vorzugsweise ein Messgerät, das auf dem Coriolis-Prinzip basiert. Solche Coriolis-Massendurchflussmesser an sich sind hinreichend bekannt. Mit ihnen wird die Masse des Gases gemessen, welches bei der Betankung abgegeben wird.The mass flow meter 8 is preferably a measuring device based on the Coriolis principle is based. Such Coriolis mass flow meters per se are well known. They measure the mass of the gas which is given when refueling.

Die Umschalteinrichtung 5 dient dazu, jeweils eine der Verbindungsleitungen 4a oder 4b oder 4c mit der Leitung 7 zu verbinden. Ist beispielsweise die Verbindungsleitung 4a mit der Leitung 7 verbunden und sinkt während der Betankung der Druck in dem zur Verbindungsleitung 4a gehörenden Speichertank der Speichereinheit 3 so weit ab, dass der Massestrom des Gases zu gering wird, so kann mit der Umschalteinrichtung 5 auf einen anderen Speichertank umgeschaltet werden, indem die Leitung 7 mit der Verbindungsleitung 4b oder 4c verbunden wird.The switching device 5 serves one of the connecting lines 4a or 4b or 4c to be connected to line 7. For example, is the Connection line 4a connected to line 7 and drops during the Refueling the pressure in the part of the connecting line 4a Storage tank of the storage unit 3 so far that the mass flow of the Gas is too low, so the switching device 5 to one other storage tank can be switched over by connecting line 7 with the Connection line 4b or 4c is connected.

Bezüglich weiterer Details und Ausführungsformen sei hier auf die bereits zitierte EP-A-0 653 585 verwiesen, wo derartige Gasbetankungsanlagen mit Ausnahme des Kommunikationsmoduls ausführlich beschrieben sind.With regard to further details and embodiments, reference is made here to the cited EP-A-0 653 585, where such gas refueling systems with Exception of the communication module are described in detail.

Das Kommunikationsmodul 13 empfängt Daten, beispielsweise Messwerte oder das Volumen des Fahrzeugtanks 31 von dem Elektronikmodul 34 des Kraftfahrzeugs 30. Dazu ist das Kommunikationsmodul 13 mit dem Elektronikmodul 34 signalverbunden. Dies kann beispielsweise über eine Signalleitung 23 erfolgen. Es ist auch möglich, die Signalleitung 23 in die druckfeste Leitung 10 zu integrieren, beispielsweise die Signalleitung 23 an der Aussenseite der Leitung 10 anzuordnen. Ferner ist es möglich, die Signalverbindung zwischen dem Elektronikmodul 34 und dem Kommunikationsmodul 13 kabellos auszugestalten, beispielsweise mittels Funk oder optischer Methoden wie Infrarotsignale. The communication module 13 receives data, for example measured values or the volume of the vehicle tank 31 from the electronics module 34 of the Motor vehicle 30. For this purpose, the communication module 13 with the Electronics module 34 signal connected. This can be done using a Signal line 23 take place. It is also possible to connect the signal line 23 to the To integrate pressure-resistant line 10, for example the signal line 23 to be arranged on the outside of the line 10. It is also possible to Signal connection between the electronics module 34 and the To design communication module 13 wirelessly, for example by means of Radio or optical methods such as infrared signals.

Das erfindungsgemässe Verfahren basiert darauf, mit Hilfe der Sensoreinrichtung, welche in dem Fahrzeugtank 31 angeordnet ist, während der Befüllung den momentanen Wert einer Kenngrösse zu bestimmen, welche repräsentativ für den momentanen Füllstand des Fahrzeugtanks 31 ist, das heisst, der aktuelle Füllstand des Fahrzeugtanks 31 wird durch Messungen im Fahrzeugtank 31 selbst ermittelt.The method according to the invention is based on using the Sensor device which is arranged in the vehicle tank 31 while to determine the current value of a parameter during filling, which is representative of the current fill level of the vehicle tank 31 is, that is, the current level of the vehicle tank 31 is by Measurements in the vehicle tank 31 itself determined.

Im Folgenden wird nun ein Ausführungsbeispiel des erfindungsgemässen Verfahrens unter Bezugnahme auf das in Fig. 2 dargestellte Flussdiagramm näher erläutert. Bei diesem Ausführungsbeispiel wird als Kenngrösse die Dichte ρ des Gases im Fahrzeugtank 31 verwendet. Diese auch als Betriebsdichte bezeichnete Kenngrösse hat den Vorteil, dass für sie ein maximal zulässiger Endwert angegeben werden kann, der unabhängig von der jeweils herrschenden Temperatur ist. Somit ist es nicht mehr notwendig, einen von der bei der Betankung herrschenden Aussentemperatur abhängigen Druck zu berechnen, bei welchem die Betankung beendet wird. Bei bisher bekannten Verfahren muss der temperaturabhängige Enddruck für die Befüllung z. B. aus dem Isochorenverhalten des Gases berechnet werden. Bei dem hier vorgeschlagenen Verfahren kann ein maximal erlaubter Endwert für die Dichte des Gases vorgegeben werden, und die Befüllung kann dann - unabhängig von der jeweils herrschenden Aussentemperatur - solange fortgesetzt werden, bis dieser Endwert für die Dichte im Fahrzeugtank 31 erreicht ist.An exemplary embodiment of the method according to the invention will now be described below Method with reference to the flow chart shown in FIG. 2 explained in more detail. In this embodiment, the parameter is the Density ρ of the gas used in the vehicle tank 31. This also as Operating density designated characteristic has the advantage that a maximum permissible end value can be specified, which is independent of the prevailing temperature. So it is no longer necessary one of the outside temperature prevailing during refueling dependent pressure at which refueling is terminated. In previously known methods, the temperature-dependent final pressure for the filling z. B. calculated from the isochoric behavior of the gas become. In the method proposed here, a maximum allowed Final value for the density of the gas can be specified, and the filling can then - regardless of the prevailing outside temperature - continue until this final value for the density in Vehicle tank 31 is reached.

Bei der Befüllung wird ständig die momentan im Fahrzeugtank herrschende Dichte des Gases ermittelt. Im Hinblick auf die Betriebssicherheit ist es besonders vorteilhaft, diese Dichte jeweils auf zwei unterschiedliche Weisen zu bestimmen, nämlich einerseits mit Hilfe der Messwerte der im Fahrzeugtank 31 angeordneten Sensoren 32,33 und andererseits mit Hilfe der von der Abgabevorrichtung 2 abgegebenen Gasmasse, welche mittels des Massendurchflussmessers 8 in der Abgabevorrichtung 2 gemessen wird. Weichen diese beiden Werte für die Dichte stärker als ein vorgebbarer Grenzwert voneinander ab, so deutet dies auf einen Fehler hin. Beispielsweise kann eine Leckage aufgetreten sein oder einer der Sensoren 32,33 arbeitet nicht ordnungsgemäss. Mittels dieser jeweils zweifachen Bestimmung der Dichte können somit auch gefährliche Zustände, wie beispielsweise eine Überfüllung des Fahrzeugtanks 31 vermieden werden.When filling, the one that is currently in the vehicle tank is constantly changing Density of the gas determined. In terms of operational security, it is particularly advantageous, this density in each case in two different ways to determine, namely on the one hand with the help of the measured values of the Vehicle tank 31 arranged sensors 32,33 and on the other hand with the help the gas mass dispensed by the dispenser 2, which by means of of the mass flow meter 8 is measured in the dispensing device 2. If these two values for the density deviate more than a specifiable one Limit value from each other, this indicates an error. For example, a leak or one of the sensors may have occurred 32.33 is not working properly. By means of these two Determination of the density can also be dangerous conditions, such as for example, overfilling of the vehicle tank 31 can be avoided.

Für die Dichte ρT des Gases im Fahrzeugtank 31 gilt: ρT = mT/V wobei mT die Masse des Gases im Fahrzeugtank 31 bezeichnet und V das Volumen des Fahrzeugtanks 31, das eine konstante Grösse ist.The following applies to the density ρ T of the gas in the vehicle tank 31: ρ T = m T / V where m T denotes the mass of the gas in the vehicle tank 31 and V the volume of the vehicle tank 31, which is a constant variable.

Andererseits ergibt sich aus der Gasgleichung mT/V = pT/(z·R·TT) wobei pT den Druck im Tank bezeichnet, z den Realgasfaktor, der eine gasspezifische, von Druck und Temperatur abhängige Grösse ist, R die allgemeine Gaskonstante und TT die Temperatur des Gases im Tank. Durch Messung der Temperatur TT und des Drucks pT im Fahrzeugtank 31 mittels des Temperatursensors 33 bzw. des Drucksensors 32 lässt sich dann also die momentane Dichte ρT im Fahrzeugtank 31 bestimmen. Der jeweilige Wert für den Realgasfaktor z kann beispielsweise aus einer gespeicherten Tabelle als Funktion des Drucks und der Temperatur entnommen werden.On the other hand, it follows from the gas equation m T / V = p T / (Z * R * T T ) where p T denotes the pressure in the tank, z the real gas factor, which is a gas-specific variable that is dependent on pressure and temperature, R the general gas constant and T T the temperature of the gas in the tank. By measuring the temperature T T and the pressure p T in the vehicle tank 31 by means of the temperature sensor 33 and the pressure sensor 32, the instantaneous density ρ T in the vehicle tank 31 can then be determined. The respective value for the real gas factor z can be taken, for example, from a stored table as a function of the pressure and the temperature.

Für die Betankung des Kraftfahrzeugs 30 wird die druckfeste Leitung 10 der Abgabevorrichtung 2 mittels der Kupplung 11 an den Einfüllstutzen 37 des Kraftfahrzeugs 30 angeschlossen. Ferner wird gegebenenfalls die Signalleitung 23 einerseits mit dem Elektronikmodul 34 und andererseits mit dem Kommunikationsmodul 13 verbunden. Bevor der Fahrzeugtank 31 mit Gas befüllt wird, erfolgt zunächst mittels des Drucksensors 32 bzw. des Temperatursensors 33 eine Messung des Anfangsdrucks p0 bzw. der Anfangstemperatur T0, die vor dem Beginn der Befüllung im Fahrzeugtank 31 herrschen (Schritt 101 in Fig. 2). Aus p0, T0 und dem entsprechenden Wert für den Realgasfaktor z wird dann im Schritt 102 die Dichte ρ0 als Anfangswert ermittelt. ρ0 gibt die aktuelle Dichte des Gases im Fahrzeugtank 31 vor dem Beginn der Befüllung an. Das Elektronikmodul 34 übermittelt den Wert von ρ0 sowie das Volumen V des zu befüllenden Fahrzeugtanks 31 an das Kommunikationsmodul 13 der Abgabevorrichtung 2.For the refueling of the motor vehicle 30, the pressure-resistant line 10 of the dispensing device 2 is connected to the filler neck 37 of the motor vehicle 30 by means of the coupling 11. Furthermore, the signal line 23 is optionally connected on the one hand to the electronics module 34 and on the other hand to the communication module 13. Before the vehicle tank 31 is filled with gas, the pressure sensor 32 or the temperature sensor 33 first measures the initial pressure p 0 or the initial temperature T 0 that prevail in the vehicle tank 31 before the start of filling (step 101 in FIG. 2 ). The density ρ 0 is then determined in step 102 from p 0 , T 0 and the corresponding value for the real gas factor z as an initial value. ρ 0 indicates the current density of the gas in the vehicle tank 31 before the start of filling. The electronics module 34 transmits the value of ρ 0 and the volume V of the vehicle tank 31 to be filled to the communication module 13 of the dispensing device 2.

In der Abgabevorrichtung 2, vorzugsweise in der Auswerte- und Regeleinheit 12, wird aus dem Volumen V des Fahrzeugtanks 31 und dem Anfangswert ρ0 die Anfangsmasse m0 des Gases im Fahrzeugtank 31 gemäss der Beziehung m0 = ρ0·V bestimmt. Der Anfangswert m0 gibt also die Masse des Gases an, das vor dem Beginn der Befüllung im Fahrzeugtank 31 vorhanden ist.In the dispensing device 2, preferably in the evaluation and control unit 12, the volume V of the vehicle tank 31 and the initial value ρ 0 become the initial mass m 0 of the gas in the vehicle tank 31 according to the relationship m 0 = ρ 0 · V certainly. The initial value m 0 thus indicates the mass of the gas that is present in the vehicle tank 31 before the start of filling.

Im Schritt 103 (Fig. 2) beginnt nun der Vorgang des Befüllens. Die Auswerte- und Regeleinheit 12 öffnet das Magnetventil 6 und das Gas kann aus der Speichereinheit 3 durch den Massendurchflussmesser 8, die druckfeste Leitung 10 und die Verbindungsleitung 36 in den Fahrzeugtank 31 einströmen. Während des Befüllungsvorgangs messen der Drucksensor 32 und der Temperatursensor 33 ständig oder in kurzen Zeitabständen den jeweils aktuellen Druck pT bzw. die jeweils aktuelle Temperatur TT im Fahrzeugtank 31 (Schritt 104). Aus diesen beiden Werten wird im Schritt 105 der aktuelle Wert ρT für die Dichte des Gases im Fahrzeugtank 31 gemäss der weiter vorne angegebenen Beziehung bestimmt und an die Abgabevorrichtung 2 übermittelt.The filling process now begins in step 103 (FIG. 2). The evaluation and control unit 12 opens the solenoid valve 6 and the gas can flow from the storage unit 3 through the mass flow meter 8, the pressure-resistant line 10 and the connecting line 36 into the vehicle tank 31. During the filling process, the pressure sensor 32 and the temperature sensor 33 continuously or at short intervals measure the current pressure p T or the current temperature T T in the vehicle tank 31 (step 104). From these two values, the current value ρ T for the density of the gas in the vehicle tank 31 is determined in step 105 in accordance with the relationship given further above and transmitted to the dispensing device 2.

Während des Befüllungsvorgangs wird in der Abgabevorrichtung 2 ständig mittels des Massendurchflussmessers 8 die Masse mG des abgegebenen Gases messtechnisch erfasst (Schritt 106). Dies erfolgt beispielsweise mit einer Rate von etwa hundert Pulsen (Messungen) pro Kilogramm abgegebenen Gases. Die Auswerte- und Regeleinheit 12 der Abgabevorrichtung 2 ermittelt im Schritt 107 mit Hilfe des Volumens V des Fahrzeugtanks 31, der Anfangsmasse m0 des Gases im Fahrzeugtank und dem jeweils aktuellen Wert der Masse mG des abgegebenen Gases einen Vergleichswert ρm als Kontrollgrösse für die Dichte des Gases im Fahrzeugtank gemäss der Beziehung ρm = (m0 + mG)/V During the filling process, the mass m G of the released gas is continuously measured in the dispensing device 2 by means of the mass flow meter 8 (step 106). This is done, for example, at a rate of about a hundred pulses (measurements) per kilogram of gas released. In step 107, the evaluation and control unit 12 of the dispensing device 2 uses the volume V of the vehicle tank 31, the initial mass m 0 of the gas in the vehicle tank and the current value of the mass m G of the dispensed gas to determine a comparison value ρ m as a control variable for the Density of gas in the vehicle tank according to the relationship ρ m = (m 0 + m G ) / V

Im Schritt 108 wird dann die Kontrollgrösse ρm mit der im Fahrzeugtank 31 bestimmten Dichte ρT verglichen. Falls die Abweichung zwischen der Kontrollgrösse ρm und der im Fahrzeugtank bestimmten Dichte ρT einen vorgebbaren Grenzwert D überschreitet, wird die Befüllung beendet (Schritt 110) und/oder eine Fehlerwarnung gegeben. Anderenfalls wird im Schritt 109 überprüft, ob die Dichte p des Gases im Fahrzeugtank 31 einen vorgebbaren Endwert ρE erreicht hat. Da bei Erreichen des Schritts 109 bereits sichergestellt ist, dass sich ρT und ρm höchstens um D unterscheiden, ist es prinzipiell egal, ob ρT oder ρm für den Vergleich mit dem Endwert ρE herangezogen werden. Natürlich kann auch der Mittelwert oder ein gewichteter Mittelwert von ρT und ρm für den Vergleich mit ρE verwendet werden. Hat die Dichte p den Endwert ρE erreicht, so wird die Befüllung im Schritt 110 beendet, anderenfalls wird die Befüllung fortgesetzt.In step 108, the control variable ρ m is then compared with the density ρ T determined in the vehicle tank 31. If the deviation between the control variable ρ m and the density ρ T determined in the vehicle tank exceeds a predeterminable limit value D, the filling is terminated (step 110) and / or an error warning is given. Otherwise, it is checked in step 109 whether the density p of the gas in the vehicle tank 31 has reached a predeterminable final value ρ E. Since step 109 already ensures that ρ T and ρ m differ by a maximum of D, it is in principle irrelevant whether ρ T or ρ m are used for the comparison with the final value ρ E. Of course, the mean or a weighted mean of ρ T and ρ m can also be used for the comparison with ρ E. If the density p has reached the final value ρ E , the filling is ended in step 110, otherwise the filling is continued.

Ein Vorteil des beschriebenen Verfahrens liegt darin, dass die maximal zulässige Dichte oder Betriebsdichte ρE für ein gegebenes Gas unabhängig von der Aussentemperatur ist, bei welcher die Betankung stattfindet.An advantage of the described method is that the maximum permissible density or operating density ρ E for a given gas is independent of the outside temperature at which the refueling takes place.

Ein weiterer Vorteil ist es, insbesondere im Hinblick auf die Sicherheit, dass die Dichte des Gases im Fahrzeugtank auf zwei unterschiedliche Arten ermittelt wird.Another advantage, particularly in terms of security, is that the density of the gas in the vehicle tank in two different ways is determined.

Prinzipiell ist es möglich, dass z. B. einer der beiden Sensoren 32,33, die im Fahrzeugtank angeordnet sind, bereits beim Beginn der Betankung fehlerbehaftet ist. Dies führt dann unter anderem auch dazu, dass die Anfangsmasse m0 des Gases verkehrt berechnet wird und folglich auch die in der Abgabevorrichtung ermittelte Kontrollgrösse ρm fehlerhaft ist. Da aber die mittels der Sensoren 32,33 erfassten Anfangswerte p0 für den Druck und T0 für die Temperatur im Fahrzeugtank 31 nur über als Anfangsbedingung in die jeweilige Bestimmung der Kontrollgrösse ρm eingehen, werden die Werte für die im Tank ermittelte Dichte ρT einerseits und die Werte für die Kontrollgrösse ρm mit fortschreitender Befüllung immer mehr divergieren, sodass auch solche Fehler erkannt werden, bevor es zu einer gefährlichen Überfüllung des Fahrzeugtanks 31 kommt. In principle, it is possible that, for. B. one of the two sensors 32, 33, which are arranged in the vehicle tank, is faulty already at the beginning of the refueling. This then leads, among other things, to the fact that the initial mass m 0 of the gas is calculated incorrectly, and consequently the control variable ρ m determined in the dispensing device is also incorrect. However, since the initial values p 0 for the pressure and T 0 for the temperature in the vehicle tank 31 recorded by means of the sensors 32, 33 are used only as an initial condition in the respective determination of the control variable ρ m , the values for the density ρ T determined in the tank become on the one hand and the values for the control variable ρ m diverge more and more as the filling progresses, so that such errors are also recognized before the vehicle tank 31 is dangerously overfilled.

Es versteht sich, dass die jeweilige Berechnung der Dichte ρT nicht im Kraftfahrzeug durchgeführt werden muss. Es ist auch möglich, dass das Elektronikmodul 34 die Messwerte bzw. Daten des Temperatursensors 33 und des Drucksensors 32, also z. B. p0, T0, pT, TT, an die Abgabevorrichtung 2 übermittelt und dort dann jeweils die Bestimmung von ρ0 und ρT erfolgt.It goes without saying that the respective calculation of the density ρ T does not have to be carried out in the motor vehicle. It is also possible that the electronics module 34 contains the measured values or data of the temperature sensor 33 and the pressure sensor 32, that is to say, for. B. p 0 , T 0 , p T , T T , transmitted to the dispensing device 2 and the determination of ρ 0 and ρ T then takes place there.

Claims (10)

Verfahren zum Befüllen eines Fahrzeugtanks mit einem Gas, bei welchem der Fahrzeugtank (31) mit einer druckfesten Leitung (10) an eine Abgabevorrichtung (2) angeschlossen wird und das unter Druck stehende Gas mittels der Abgabevorrichtung (2) aus einer Speichereinheit (3) in den Fahrzeugtank (31) gefüllt wird, gekennzeichnet durch die folgenden Schritte: mit Hilfe einer Sensoreinrichtung (32,33), welche in dem Fahrzeugtank (31) angeordnet ist, wird während der Befüllung der momentane Wert einer Kenngrösse (ρT) bestimmt, welche repräsentativ für den momentanen Füllstand des Fahrzeugtanks (31) ist, die Befüllung wird beendet, wenn die Kenngrösse (ρT) einen vorgebbaren Endwert (ρE) erreicht hat. Method for filling a vehicle tank with a gas, in which the vehicle tank (31) is connected to a delivery device (2) by means of a pressure-resistant line (10) and the pressurized gas from the storage unit (3) by means of the delivery device (2) the vehicle tank (31) is filled, characterized by the following steps: with the help of a sensor device (32, 33) which is arranged in the vehicle tank (31), the current value of a parameter (ρ T ) is determined during the filling, which is representative of the current level of the vehicle tank (31), filling is ended when the parameter (ρ T ) has reached a definable final value (ρ E ). Verfahren nach Anspruch 1, bei welchem der Endwert (ρE) der Kenngrösse unabhängig von der Temperatur ist.Method according to Claim 1, in which the final value (ρ E ) of the parameter is independent of the temperature. Verfahren nach Anspruch 1 oder 2, bei welchem zunächst die Kenngrösse bestimmt wird, bevor der Fahrzeugtank (31) mit Gas befüllt wird, sodass der aktuelle Füllstand des Fahrzeugtanks vor dem Beginn der Befüllung als Anfangswert (ρ0) bekannt ist.Method according to Claim 1 or 2, in which the parameter is first determined before the vehicle tank (31) is filled with gas, so that the current fill level of the vehicle tank before the start of filling is known as the initial value (ρ 0 ). Verfahren nach einem der vorangehenden Ansprüche, wobei in der Abgabevorrichtung (2) die Masse (mG) des abgegebenen Gases messtechnisch erfasst wird, daraus eine der Kenngrösse (ρT) entsprechende Kontrollgrösse (ρm) bestimmt wird, die Kontrollgrösse (ρm) jeweils mit der Kenngrösse (ρT) verglichen wird, und eine Fehlermeldung oder das Abbrechen der Befüllung erfolgt, wenn die Abweichung zwischen der Kenngrösse (ρT) und der Kontrollgrösse (ρm) einen vorgebbaren Grenzwert (D) überschreitet.Method according to one of the preceding claims, wherein in the dispensing device (2) the mass (m G ) of the discharged gas is measured, from which a control variable (ρ m ) corresponding to the parameter (ρ T ) is determined, the control variable (ρ m ) is compared with the parameter (ρ T ) and an error message or filling is canceled if the deviation between the parameter (ρ T ) and the control parameter (ρ m ) exceeds a predefinable limit value (D). Verfahren nach einem der vorangehenden Ansprüche, bei welchem als Kenngrösse die Dichte (ρT) des Gases im Fahrzeugtank (31) bestimmt wird. Method according to one of the preceding claims, in which the density (ρ T ) of the gas in the vehicle tank (31) is determined as the parameter. Verfahren nach einem der vorangehenden Ansprüche, bei welchem die im Fahrzeugtank (31) angeordnete Sensoreinrichtung einen Temperatursensor (33) und einen Drucksensor (31) umfasst, mit welchen die Temperatur und der Druck des Gases im Tank gemessen wird, und daraus die Dichte (ρT) des Gases als Kenngrösse bestimmt wird.Method according to one of the preceding claims, in which the sensor device arranged in the vehicle tank (31) comprises a temperature sensor (33) and a pressure sensor (31) with which the temperature and the pressure of the gas in the tank is measured, and from this the density (ρ T ) of the gas is determined as a parameter. Verfahren nach Anspruch 5 oder 6, bei welchem: zunächst die Dichte (ρ0) bestimmt wird, bevor der Fahrzeugtank (31) mit Gas befüllt wird, sodass die aktuelle Dichte des Gases im Fahrzeugtank vor dem Beginn der Befüllung als Anfangswert bekannt ist, das Volumen (V) des zu befüllenden Fahrzeugtanks (31) an die Abgabevorrichtung (2) übermittelt wird, aus dem Volumen (V) und dem Anfangswert der Dichte (ρ0) die Anfangsmasse (m0) des Gases, die vor dem Beginn der Befüllung im Fahrzeugtank vorhanden ist, bestimmt wird. The method of claim 5 or 6, wherein: the density (ρ 0 ) is first determined before the vehicle tank (31) is filled with gas, so that the current density of the gas in the vehicle tank before the start of filling is known as the initial value, the volume (V) of the vehicle tank (31) to be filled is transmitted to the dispensing device (2), from the volume (V) and the initial value of the density (ρ 0 ) the initial mass (m 0 ) of the gas, which is present in the vehicle tank before the start of filling, is determined. Verfahren nach Anspruch 7, bei welchem in der Abgabevorrichtung (2) mit Hilfe des Volumens (V) des Fahrzeugtanks (31), der Anfangsmasse (m0) des Gases im Fahrzeugtank und der messtechnisch erfassten Masse (mG) des abgegebenen Gases ein Vergleichswert für die Dichte des Gases im Fahrzeugtank als Kontrollgrösse (ρm) ermittelt und jeweils mit der im Fahrzeugtank (31) bestimmten Dichte (ρT) verglichen wird.A method according to claim 7, in which in the dispensing device (2) using the volume (V) of the vehicle tank (31), the initial mass (m 0 ) of the gas in the vehicle tank and the metrologically recorded mass (m G ) of the released gas a comparison value determined for the density of the gas in the vehicle tank as a control variable (ρ m ) and in each case compared with the density (ρ T ) determined in the vehicle tank (31). Verfahren nach Anspruch 8, bei welchem die Befüllung beendet wird, wenn die Dichte einen vorgebbaren Endwert (ρE) erreicht, oder wenn die Abweichung zwischen der Kontrollgrösse (ρm) und der im Fahrzeugtank bestimmten Dichte (ρT) einen vorgebbaren Grenzwert (D) überschreitet.Method according to Claim 8, in which the filling is terminated when the density reaches a predeterminable final value (ρ E ), or when the deviation between the control variable (ρ m ) and the density (ρ T ) determined in the vehicle tank has a predefinable limit value (D ) exceeds. Gasbetankungsanlage betrieben nach einem Verfahren gemäss einem der vorangehenden Ansprüche.Gas refueling system operated according to a process according to a of the preceding claims.
EP20010810985 2000-11-08 2001-10-09 Process for filling a vehicle tank with gas Expired - Lifetime EP1205704B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20010810985 EP1205704B1 (en) 2000-11-08 2001-10-09 Process for filling a vehicle tank with gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP00811049 2000-11-08
EP00811049 2000-11-08
EP20010810985 EP1205704B1 (en) 2000-11-08 2001-10-09 Process for filling a vehicle tank with gas

Publications (2)

Publication Number Publication Date
EP1205704A1 true EP1205704A1 (en) 2002-05-15
EP1205704B1 EP1205704B1 (en) 2008-03-26

Family

ID=26074073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010810985 Expired - Lifetime EP1205704B1 (en) 2000-11-08 2001-10-09 Process for filling a vehicle tank with gas

Country Status (1)

Country Link
EP (1) EP1205704B1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070141A1 (en) * 2004-12-22 2006-07-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for controlled filling of pressurized gas tanks
EP1760388A2 (en) 2005-08-31 2007-03-07 Honda Motor Co., Ltd. Pressure differential system for controlling high pressure refill gas flow into on board vehicle fuel tanks
EP2020560A1 (en) * 2007-08-01 2009-02-04 Toptron GmbH Electronic flow sensor
EP2093475A1 (en) * 2008-02-20 2009-08-26 Air Products and Chemicals, Inc. Compressor fill method and apparatus
WO2011012937A1 (en) * 2009-07-30 2011-02-03 Toyota Jidosha Kabushiki Kaisha Gas filling system
WO2011133296A1 (en) * 2010-04-21 2011-10-27 Honda Motor Co., Ltd. Method and system for tank refilling
WO2012023015A3 (en) * 2010-08-20 2012-04-19 Toyota Jidosha Kabushiki Kaisha Gas supply system and correction method
NL2006387C2 (en) * 2011-03-14 2012-09-17 R P Van Der Donk Beheer B V Arrangement comprising a gas delivery control system and a central heating installation and gas delivery control method.
US8286670B2 (en) 2007-06-22 2012-10-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for controlled filling of pressurized gas tanks
FR2978233A1 (en) * 2011-07-22 2013-01-25 Air Liquide METHOD FOR FILLING A RESERVOIR WITH PRESSURIZED GAS
EP2634136A1 (en) * 2012-03-01 2013-09-04 ThyssenKrupp Marine Systems GmbH Method for filling a metal hydride storage vessel with hydrogen
US9016329B2 (en) 2009-11-18 2015-04-28 Toyota Jidosha Kabushiki Kaisha Gas filling system, gas filling method, and vehicle
US9212783B2 (en) 2010-04-21 2015-12-15 Honda Motor Co., Ltd. Method and system for tank refilling
US9347612B2 (en) 2010-04-21 2016-05-24 Honda Motor Co., Ltd. Method and system for tank refilling using active fueling speed control
US9347614B2 (en) 2010-04-21 2016-05-24 Honda Motor Co., Ltd. Method and system for tank refilling using active fueling speed control
DE102014226545A1 (en) * 2014-12-19 2016-06-23 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle with a cryogenic pressure vessel and method for refueling a cryogenic pressure vessel of a motor vehicle
US9605804B2 (en) 2010-04-21 2017-03-28 Honda Motor Co., Ltd. Method and system for tank refilling using active fueling speed control
US10077998B2 (en) 2015-09-14 2018-09-18 Honda Motor Co., Ltd. Hydrogen fueling with integrity checks
DE102020115640A1 (en) 2020-06-12 2021-12-16 Westenergie Ag Method for determining an amount of hydrogen released
US11313514B2 (en) 2018-12-04 2022-04-26 Honda Motor Co., Ltd. Method and system for tank refueling using dispenser and nozzle readings
US11339926B2 (en) 2018-12-05 2022-05-24 Honda Motor Co., Ltd. Methods and systems for improving hydrogen refueling
DE102021203385A1 (en) 2021-04-06 2022-10-06 Robert Bosch Gesellschaft mit beschränkter Haftung Method for refueling a means of transport using a hydrogen refueling facility
DE102021120035A1 (en) 2021-08-02 2023-02-02 E.On Se Tamper-resistant gas delivery device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479966A (en) * 1993-07-26 1996-01-02 Consolidated Natural Gas Service Company, Inc. Quick fill fuel charge process
US5557050A (en) * 1993-07-09 1996-09-17 Schlumberger Industries System for metering gas supplied under high pressure
US5570729A (en) * 1993-11-08 1996-11-05 Maschinenfabrik Sulzer-Burckhardt Ag Method and apparatus for the rapid tanking of a pressure container with a gaseous medium
US5628349A (en) * 1995-01-25 1997-05-13 Pinnacle Cng Systems, Llc System and method for dispensing pressurized gas
US5868176A (en) * 1997-05-27 1999-02-09 Gas Research Institute System for controlling the fill of compressed natural gas cylinders
US5881779A (en) * 1996-03-20 1999-03-16 Gas Research Institute Computer readable medium containing software for controlling an automated compressed gas dispensing system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557050A (en) * 1993-07-09 1996-09-17 Schlumberger Industries System for metering gas supplied under high pressure
US5479966A (en) * 1993-07-26 1996-01-02 Consolidated Natural Gas Service Company, Inc. Quick fill fuel charge process
US5570729A (en) * 1993-11-08 1996-11-05 Maschinenfabrik Sulzer-Burckhardt Ag Method and apparatus for the rapid tanking of a pressure container with a gaseous medium
US5628349A (en) * 1995-01-25 1997-05-13 Pinnacle Cng Systems, Llc System and method for dispensing pressurized gas
US5881779A (en) * 1996-03-20 1999-03-16 Gas Research Institute Computer readable medium containing software for controlling an automated compressed gas dispensing system
US5868176A (en) * 1997-05-27 1999-02-09 Gas Research Institute System for controlling the fill of compressed natural gas cylinders

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070141A1 (en) * 2004-12-22 2006-07-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for controlled filling of pressurized gas tanks
EP1760388A2 (en) 2005-08-31 2007-03-07 Honda Motor Co., Ltd. Pressure differential system for controlling high pressure refill gas flow into on board vehicle fuel tanks
US8122918B2 (en) 2005-08-31 2012-02-28 Honda Motor Co. Ltd. Pressure differential system for controlling high pressure refill gas flow into on board vehicle fuel tanks
US8286670B2 (en) 2007-06-22 2012-10-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for controlled filling of pressurized gas tanks
WO2009015895A1 (en) * 2007-08-01 2009-02-05 Toptron Gmbh Electronic flow sensor
US9587754B2 (en) 2007-08-01 2017-03-07 Toptron Gmbh Electronic flow sensor
EP3006812A1 (en) * 2007-08-01 2016-04-13 Toptron GmbH Electronic flow sensor
EP2020560A1 (en) * 2007-08-01 2009-02-04 Toptron GmbH Electronic flow sensor
US8720469B2 (en) 2007-08-01 2014-05-13 Toptron Gmbh Electronic flow sensor
EP2093475A1 (en) * 2008-02-20 2009-08-26 Air Products and Chemicals, Inc. Compressor fill method and apparatus
US8365777B2 (en) 2008-02-20 2013-02-05 Air Products And Chemicals, Inc. Compressor fill method and apparatus
WO2011012937A1 (en) * 2009-07-30 2011-02-03 Toyota Jidosha Kabushiki Kaisha Gas filling system
US8708005B2 (en) 2009-07-30 2014-04-29 Toyota Jidosha Kabushiki Kaisha Gas filling system
US9016329B2 (en) 2009-11-18 2015-04-28 Toyota Jidosha Kabushiki Kaisha Gas filling system, gas filling method, and vehicle
US9605804B2 (en) 2010-04-21 2017-03-28 Honda Motor Co., Ltd. Method and system for tank refilling using active fueling speed control
US9347614B2 (en) 2010-04-21 2016-05-24 Honda Motor Co., Ltd. Method and system for tank refilling using active fueling speed control
CN102947636A (en) * 2010-04-21 2013-02-27 本田技研工业株式会社 Method and system for tank refilling
WO2011133296A1 (en) * 2010-04-21 2011-10-27 Honda Motor Co., Ltd. Method and system for tank refilling
US9347612B2 (en) 2010-04-21 2016-05-24 Honda Motor Co., Ltd. Method and system for tank refilling using active fueling speed control
US9222620B2 (en) 2010-04-21 2015-12-29 Honda Motor Co., Ltd. Method and system for tank refilling
US8783303B2 (en) 2010-04-21 2014-07-22 Ryan HARTY Method and system for tank refilling
CN102947636B (en) * 2010-04-21 2014-12-10 本田技研工业株式会社 Method for filling compress gas tank and method for operating hydrogen filling stations
US9212783B2 (en) 2010-04-21 2015-12-15 Honda Motor Co., Ltd. Method and system for tank refilling
WO2012023015A3 (en) * 2010-08-20 2012-04-19 Toyota Jidosha Kabushiki Kaisha Gas supply system and correction method
US10107454B2 (en) 2010-08-20 2018-10-23 Toyota Jidosha Kabushiki Kaisha Gas supply system and correction method
WO2012125022A3 (en) * 2011-03-14 2013-01-17 R.P. Van Der Donk Beheer B.V. Arrangement comprising a gas delivery control system and a central heating installation and gas delivery control method
NL2006387C2 (en) * 2011-03-14 2012-09-17 R P Van Der Donk Beheer B V Arrangement comprising a gas delivery control system and a central heating installation and gas delivery control method.
WO2012125022A2 (en) 2011-03-14 2012-09-20 R.P. Van Der Donk Beheer B.V. Arrangement comprising a gas delivery control system and a central heating installation and gas delivery control method
FR2978233A1 (en) * 2011-07-22 2013-01-25 Air Liquide METHOD FOR FILLING A RESERVOIR WITH PRESSURIZED GAS
WO2013014346A1 (en) 2011-07-22 2013-01-31 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for filling a tank with pressurised gas
EP2634136A1 (en) * 2012-03-01 2013-09-04 ThyssenKrupp Marine Systems GmbH Method for filling a metal hydride storage vessel with hydrogen
US10655785B2 (en) 2014-12-19 2020-05-19 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle with a cryogenic pressure vessel and method for refuelling a cryogenic pressure vessel of a motor vehicle
DE102014226545A1 (en) * 2014-12-19 2016-06-23 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle with a cryogenic pressure vessel and method for refueling a cryogenic pressure vessel of a motor vehicle
US10077998B2 (en) 2015-09-14 2018-09-18 Honda Motor Co., Ltd. Hydrogen fueling with integrity checks
US10782173B2 (en) 2015-09-14 2020-09-22 Honda Motor Co., Ltd. Hydrogen fueling with integrity checks
US11313514B2 (en) 2018-12-04 2022-04-26 Honda Motor Co., Ltd. Method and system for tank refueling using dispenser and nozzle readings
US11339926B2 (en) 2018-12-05 2022-05-24 Honda Motor Co., Ltd. Methods and systems for improving hydrogen refueling
DE102020115640A1 (en) 2020-06-12 2021-12-16 Westenergie Ag Method for determining an amount of hydrogen released
DE102021203385A1 (en) 2021-04-06 2022-10-06 Robert Bosch Gesellschaft mit beschränkter Haftung Method for refueling a means of transport using a hydrogen refueling facility
DE102021120035A1 (en) 2021-08-02 2023-02-02 E.On Se Tamper-resistant gas delivery device
EP4130541A1 (en) 2021-08-02 2023-02-08 E.On Se Tamper-resistant gas delivery device

Also Published As

Publication number Publication date
EP1205704B1 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
EP1205704B1 (en) Process for filling a vehicle tank with gas
EP0653585B1 (en) Process and device for the quick filling of a pressure container with a gaseous fluid
DE112010005532B4 (en) Fuel leak detection system and detection method
AU780070B2 (en) A method for filling a vehicle fuel tank with gas
DE60005306T2 (en) FUEL VAPOR RECOVERY SYSTEM TEST
DE19653048A1 (en) Method and device for monitoring the filling of a cryogenic tank
DE102011111610A1 (en) Calibration of all pressure transducers in a hydrogen storage system
DE102018118718A1 (en) Device equipped with a tank
WO2008119588A1 (en) Method for the diagnosis of a shut-off valve
EP3350429B1 (en) Operating liquid container system for motor vehicles with improved misfuelling protection
DE102015204373A1 (en) Method for refueling motor vehicles and motor vehicle
WO2007042388A1 (en) Method for diagnosing a shut-off valve
EP1686090A1 (en) Procedure for the acquisition of the fuel quantity while refueling a vehicle
DE102006021820B4 (en) Overfill protection for a liquid hydrogen tank
EP3497363A1 (en) Method and device for detecting an amount of gas in a calibration-capable manner
DE102010023742A1 (en) Method for detecting liquid in gas return line by monitoring gas returning in refueling system during refueling of motor car, involves generating trouble signal when time course of sensor signal is higher than threshold level
DE102020123039A1 (en) Method for monitoring a pressure vessel system, pressure vessel system and motor vehicle
DE102019127336A1 (en) Measurement adapter, procedure and use
EP0852712B1 (en) Process and device for feeding a quantity of a substance
DE102012021692A1 (en) Method and filling device for filling a storage container with a gaseous medium under pressure, in particular hydrogen
WO2021069412A1 (en) Method for refuelling a motor vehicle, motor vehicle, filling station and computer-readable storage medium
DE102004003213A1 (en) Gas-filling process for vehicles and lorries involves measuring pressure value and/or mass flow value and comparing them with previously measured values to produce fault signals if differences are not correct
DE102008034213A1 (en) Reducing agent- tank i.e. multi-container system, for supplying e.g. aqueous urea solution, to exhaust gas system in vehicle, has measuring device to determine filling conditions of one of containers, before decanting device is enabled
DE102007036217A1 (en) Additive dosing system for gas-fueled internal combustion engines and method for the metered feeding of an additive in a gas tank
DE10322300A1 (en) Protection device for preventing faulty filling of fuel tanks e.g. for motor vehicles, aircraft etc, uses sensor for ascertaining characteristic parameter of medium poured into tank and for activating warning device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021025

AKX Designation fees paid

Designated state(s): DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 20060713

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SULZER MANAGEMENT AG PATENTABTEILUNG/0067

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50113779

Country of ref document: DE

Date of ref document: 20080508

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GREENFIELD AG

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: GREENFIELD AG

Effective date: 20080528

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20081015

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081022

Year of fee payment: 8

Ref country code: CH

Payment date: 20081015

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081024

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081014

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081021

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091009