EP0121175B1 - Helically wound conical shape metal strip catalyst supporting matrix for internal-combustion engines - Google Patents

Helically wound conical shape metal strip catalyst supporting matrix for internal-combustion engines Download PDF

Info

Publication number
EP0121175B1
EP0121175B1 EP84103016A EP84103016A EP0121175B1 EP 0121175 B1 EP0121175 B1 EP 0121175B1 EP 84103016 A EP84103016 A EP 84103016A EP 84103016 A EP84103016 A EP 84103016A EP 0121175 B1 EP0121175 B1 EP 0121175B1
Authority
EP
European Patent Office
Prior art keywords
supporting matrix
sheet
metal strips
matrix
support body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84103016A
Other languages
German (de)
French (fr)
Other versions
EP0121175A1 (en
Inventor
Theodor Dipl.-Ing. Cyron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Interatom Internationale Atomreaktorbau GmbH
Original Assignee
Interatom Internationale Atomreaktorbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interatom Internationale Atomreaktorbau GmbH filed Critical Interatom Internationale Atomreaktorbau GmbH
Priority to AT84103016T priority Critical patent/ATE25128T1/en
Publication of EP0121175A1 publication Critical patent/EP0121175A1/en
Application granted granted Critical
Publication of EP0121175B1 publication Critical patent/EP0121175B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • F01N3/2821Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates the support being provided with means to enhance the mixing process inside the converter, e.g. sheets, plates or foils with protrusions or projections to create turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal

Definitions

  • the present invention relates to a metallic carrier body for coatings of catalytically active substances for cleaning exhaust gases, in particular for internal combustion engines.
  • These metallic catalyst carrier bodies consist of a carrier matrix with spirally wound, very thin-walled, smooth and / or corrugated metal strips, which are in a circular cylindrical or oval cylinder.
  • the casing pipe are technically connected by welding, soldering or gluing.
  • a catalyst carrier body is also shown, which forms a particularly firm solder connection between its outer layer and the jacket tube.
  • These catalyst carrier bodies are exposed to considerable and changing thermal and mechanical loads during the operation of internal combustion engines, in particular motor vehicle engines.
  • the thin-walled sheets of the carrier matrix are heated at high engine power in a very short time by the catalytic conversion of the exhaust gas from an operating temperature of approx. 500 ° C locally over more or less large areas to temperatures above 900 ° C, while the surrounding thick-walled jacket pipe is cooled by external air cooling maintains a relatively low operating temperature of approx.
  • DE-A-29 05 241 describes a catalyst carrier body made of a conical winding which is intended to improve the known cylindrical windings with regard to the flow, the heat load, the light-off behavior and the ability to be installed.
  • This document relates to winding bodies in the normal and widely used dimensions and at no point attaches the necessary evaluation to the solution of the pending, however not considered thermal expansion problems in the radial direction, the diameter-length ratio. Accordingly, the solution proposed there, as will be explained in more detail below, does not eliminate the aforementioned risk of alternating load breakage.
  • the object of the present invention is a catalyst carrier body made of smooth and / or corrugated, spirally wound sheet metal strips which are fastened by joining technology in a jacket tube, which avoids the disadvantages mentioned above.
  • the object of the present invention is to provide a catalyst carrier body according to the preamble of claim 1, which avoids the disadvantages mentioned above.
  • a catalyst body according to the first claim is proposed. Thereafter, the ratio of the width of the sheet metal strips to the pitch or the outer radius of the helical winding should be selected so that no cross section through the winding cuts all layers of sheet metal strips, i.e. the axial dimension of the hollow-cone-like carrier matrix is greater than twice the width of the sheet metal strips .
  • a catalyst carrier body designed in this way has the advantage that each cross section perpendicular to the longitudinal axis has only relatively narrow ring zones made of carrier matrix cells, which in the radial direction are not hampered by neighboring cells in terms of their freedom of expansion both outwards and inwards and are therefore not subject to any alternating plastic deformations with the previous carrier bodies.
  • Winding band width is greater than half the axial extent of the helical winding. The same applies to the winding tape width in relation to the outer radius of the winding, because the high section modulus of the corrugated tape transversely to the corrugation direction allows only a slight conical shape of the winding body in its longitudinal axis due to the required helical curvature of the shaft axis.
  • the support matrix should have a truncated cone shape. If the height of the hollow truncated cone is still greater than twice the width of the winding tape, the advantages described so far are retained, so that the inner part can expand without being obstructed by the casing tube.
  • the catalyst carrier body is W-shaped in longitudinal section. This shape results when the slope changes its sign at one point during the winding of the helical winding. If, in this case as well, the total axial extent of the helical winding exceeds twice the width of the winding tapes, the advantages described are retained. With this arrangement, which is particularly suitable for catalyst bodies of larger diameter, the installation dimensions are considerably reduced compared to the normal-conical shape, without restricting the flexibility of the matrix with regard to the freedom from expansion.
  • the shapes of the carrier matrix described so far can be produced by initially winding them and then pressing them into the desired shape.
  • the carrier body should consist of a plurality of matrix sections arranged axially one behind the other with a clearance. Because of the narrower width of the winding tapes in accordance with the present invention, it may be that several matrix sections are necessary for adequate catalysis. The division of the total catalyst length into several narrow sections with free spaces in between leads to a further advantage in other respects. Calculations and tests have shown that with the usual dimensions and the gas velocities in the parallel channels of the previous catalytic converters, the flow changes to the laminar state after about 20-30 mm, which is necessary for the chemical processes taking place in a catalytic converter because of the lack of surface contacting of the exhaust gas is less favorable than a turbulent flow.
  • the cone-like shape of the catalyst body proposed in the first claim is opposite to the direction of flow of the hot exhaust gas.
  • the hot exhaust gases are diverted from the center a little more than before to the peripheral areas of the catalyst body, so that the hot gases are distributed more uniformly than previously over the cross section of the catalyst body will.
  • the conical catalyst carrier body 1 are attached in triplicate in the cylindrical jacket tube 2, which is connected via conical transition pieces 3 and 5 to the cylindrical pipe socket 4 and 6.
  • the arrow on the pipe socket 4 shows the direction of flow of the incoming exhaust gas. It can be seen that the flow is distributed over the entire cross section of the catalyst body due to the conical shape and due to the resistance in the catalyst body.
  • the catalyst bodies are, as can be seen from Fig. 2, wound in a conventional manner from a smooth 8 and a corrugated 7 sheet metal strip, z. B. the outer layer of a corrugated metal strip rests on the inner surface of the casing tube 2. According to the present invention, the sheet metal strips are wound comparatively narrow and helically.
  • the width b of the metal strips and the slope s of the helical winding, and the overall axial extent h of the helical windings are shown in FIG. 1. It can be seen that a cut perpendicular to the longitudinal axis of the catalyst carrier body can only cut all winding layers only if if the axial extent h is more than twice the width of the winding tapes b.
  • FIG. 3 and 4 show further embodiments for the exhaust gas catalyst carrier body.
  • 3 shows a frustoconical support matrix 9 and
  • FIG. 4 shows a W-shaped shape 10. Viewed axially, these designs look as shown in FIG. 2.

Abstract

1. A catalyst support body for internal combustion engines consisting of a supporting matrix with flat (8) and/or corrugated (7) sheet-metal strips which are spirally and, at least in sub-regions, helically wound and are connected to one another and to the inner side of a casing (20) by welding, soldering or sticking, characterized in that the ratio of the width (b) of the sheet-metal strips (7, 8) to the slope(s) of the helix or the diameter of the supporting matrix is so selected that no cross-section through the winding cuts all the sheet-metal strip layers, i.e. the axial spread (h) of the supporting matrix, which is in the form of a hollow cone, is greater than twice the width (b) of the sheet-metal strips (7, 8).

Description

Die vorliegende Erfindung betrifft einen metallischen Trägerkörper für Beschichtungen von katalytisch wirkenden Stoffen zur Reinigung von Abgasen, insbesondere für Verbrennungskraftmaschinen. Diese metallischen Katalysator-Trägerkörper bestehen aus einer Trägermatrix mit spiralig aufgewickelten, sehr dünnwandigen, glatten und/oder gewellten Blechbändern, die in einem kreiszylindrischen oder auch ovalzylindri. schen Mantelrohr fügetechnisch durch Schweißen, Löten oder Kleben miteinander verbunden sind.The present invention relates to a metallic carrier body for coatings of catalytically active substances for cleaning exhaust gases, in particular for internal combustion engines. These metallic catalyst carrier bodies consist of a carrier matrix with spirally wound, very thin-walled, smooth and / or corrugated metal strips, which are in a circular cylindrical or oval cylinder. the casing pipe are technically connected by welding, soldering or gluing.

In der DE-A-29 24 592 sind zahlreiche Lötverfahren zur Herstellung solcher Katalysator-Trägerkörper angedeutet und in Fig. 7 der entsprechenden Beschreibung ist auch ein Katalysator-Trägerkörper dargestellt, der eine besonders feste Lötverbindung zwischen seiner äußeren Lage und dem Mantelrohr bildet. Diese Katalysator-Trägerkörper werden beim Betrieb von Verbrennungskraftmaschinen, insbesondere Kraftfahrzeugmotoren, erheblichen und wechselnden thermischen und mechanischen Beanspruchungen ausgesetzt. Die dünnwandigen Bleche der Trägermatrix werden bei hoher Motorleistung in kürzester Zeit durch die katalytische Umsetzung des Abgases von ca. 500 °C Betriebstemperatur örtlich über mehr oder minder große Bereiche auf Temperaturen über 900 °C erhitzt, während das sie umgebende dickwandige Mantelrohr seine durch äußere Luftkühlung relativ niedrige Betriebstemperatur von ca. 300 °C noch längere Zeit beibehält und somit die Trägermatrix an einer spannungsfreien thermischen Ausdehnung ihres Volumens hindert. Die hierdurch bei hoher Temperatur entstehenden plastischen Druckverformungen der Trägermatrixzellen bewirken in der Abkühlungsphase durch trägheitsbedingte Temperaturgradienten zwischen Matrix und Mantelrohr hohe Zugbelastungen auf die Zellenwände und ihre Verbindungsstellen, die infolge der plastischen Wechselverformungen schon nach kurzer Betriebszeit reißen und in den Zonen hoher Wechselbeanspruchung zur Ablösung von ganzen Teilstücken des Trägermatrixkörpers führen können.In DE-A-29 24 592 numerous soldering methods for the production of such catalyst carrier bodies are indicated and in Fig. 7 of the corresponding description a catalyst carrier body is also shown, which forms a particularly firm solder connection between its outer layer and the jacket tube. These catalyst carrier bodies are exposed to considerable and changing thermal and mechanical loads during the operation of internal combustion engines, in particular motor vehicle engines. The thin-walled sheets of the carrier matrix are heated at high engine power in a very short time by the catalytic conversion of the exhaust gas from an operating temperature of approx. 500 ° C locally over more or less large areas to temperatures above 900 ° C, while the surrounding thick-walled jacket pipe is cooled by external air cooling maintains a relatively low operating temperature of approx. 300 ° C for a long time and thus prevents the carrier matrix from stress-free thermal expansion of its volume. The resulting plastic pressure deformations of the carrier matrix cells at high temperature cause high tensile loads on the cell walls and their connection points in the cooling phase due to inertia-related temperature gradients between the matrix and the casing tube Can lead sections of the carrier matrix body.

In Erprobungsversuchen mit Hochleistungs-Katalysatoren wurde eindeutig ermittelt, daß in Bezug auf die Stabilität und eine funktionsgerechte Lebensdauer von metallischen Katalysator-Trägerkörpern nicht nur die durch Gasdruck, Pulsation und Schwingungen erzeugten axialen und radialen Kräfte beachtet werden müssen, sondern die durch eine Dehnungsbehinderung bei der Erwärmung und Abkühlung der Trägermatrix hervorgerufenen radialen Wechselbelastungen von weitaus größerer Bedeutung sind.In trials with high-performance catalysts, it was clearly determined that not only the axial and radial forces generated by gas pressure, pulsation and vibrations have to be taken into account with regard to the stability and a functional lifetime of metallic catalyst carrier bodies, but also those caused by an expansion hindrance in the Heating and cooling the radial alternating loads caused by the carrier matrix are of far greater importance.

In der DE-A-29 05 241 wird ein Katalysator-Trägerkörper aus einer konischen Wicklung beschrieben, der die bekannten zylindrischen Wicklungen bezüglich der Durchströmung, der Wärmebelastung, des Anspringverhaltens und der Einbaufähigkeit verbessern soll. Diese Schrift bezieht sich auf Wickelkörper in den normal üblichen und vielfach verwandten Abmessungen und mißt an keiner Stelle der Lösung der anstehenden, dort jedoch nicht angedachten thermischen Dehnungsprobleme in radialer Richtung, dem Durchmesser-Längenverhältnis die erforderliche Wertung bei. Dementsprechend wird mit der dort vorgeschlagenen Lösung, wie im weiteren noch ausführlich dargelegt, die zuvor genannte Wechselbelastungs-Bruchgefahr nicht beseitigt.DE-A-29 05 241 describes a catalyst carrier body made of a conical winding which is intended to improve the known cylindrical windings with regard to the flow, the heat load, the light-off behavior and the ability to be installed. This document relates to winding bodies in the normal and widely used dimensions and at no point attaches the necessary evaluation to the solution of the pending, however not considered thermal expansion problems in the radial direction, the diameter-length ratio. Accordingly, the solution proposed there, as will be explained in more detail below, does not eliminate the aforementioned risk of alternating load breakage.

Aufgabe der vorliegenden Erfindung ist ein Katalysator-Trägerkörper aus glatten und/oder gewellten, spiralig aufgewickelten und in einem Mantelrohr fügetechnisch befestigten Blechbändern, der die oben erwähnten Nachteile vermeidet.The object of the present invention is a catalyst carrier body made of smooth and / or corrugated, spirally wound sheet metal strips which are fastened by joining technology in a jacket tube, which avoids the disadvantages mentioned above.

Aus der US-A-2 552 615 ist ferner ein Schalldämpfer bekannt, welcher spiralig und wendelförmig zu hohlkegelförmigen Gebilden aufgewickelte glatte und gewellte Blechbänder in seinem Inneren aufweist, welche den Abgasstrom eines Kraftfahrzeuges vergleichmäßigen sollen, wodurch eine Schalldämpfung bewirkt wird. Probleme der thermischen Wechselbelastung und der Belastung durch Schwingungen werden in dieser Schrift jedoch nicht berücksichtigt. Ebenso werden keine geeigneten Verbindungstechniken angegeben, die eine Übertragung der dort enthaltenen Gedanken auf Katalysator-Trägerkörper ermöglichen würden.From US-A-2 552 615 a muffler is also known which has smooth and corrugated sheet metal strips wound spirally and helically into hollow cone-shaped structures in its interior, which are intended to even out the exhaust gas flow of a motor vehicle, whereby sound absorption is effected. Problems of alternating thermal loads and vibrations are not considered in this document. Likewise, no suitable connection techniques are specified which would enable the ideas contained therein to be transferred to the catalyst carrier body.

Aufgabe der vorliegenden Erfindung ist die Schaffung eines Katalysator-Trägerkörpers gemäß dem Oberbegriff des Anspruchs 1, der die oben erwähnten Nachteile vermeidet.The object of the present invention is to provide a catalyst carrier body according to the preamble of claim 1, which avoids the disadvantages mentioned above.

Zur Lösung dieser Aufgabe wird ein Katalysatorkörper nach dem ersten Anspruch vorgeschlagen. Danach soll das Verhältnis von Breite der Blechbänder zu der Steigung bzw. dem äußeren Radius der wendelförmigen Wicklung so gewählt sein, daß kein Querschnitt durch die Wicklung alle Lagen von Blechbändern schneidet, d. h. die axiale Abmessung der hohlkegelartigen Trägermatrix ist größer als die zweifache Breite der Blechbänder. Ein so gestalteter Katalysator-Trägerkörper hat den Vorteil, daß jeder Querschnitt senkrecht zur Längsachse nur relativ schmale Ringzonen aus Trägermatrixzellen aufweist, die in radialer Richtung sowohl nach außen wie nach innen nicht von Nachbarzellen in ihrer Dehnungsfreiheit behindert werden und somit keinen plastischen Wechselverformungen unterworfen sind wie bei den bisherigen Trägerkörpern. Da die Dehnungsspannungen der Matrixzellen in Bezug auf die über die Anströmfläche unterschiedlich verteilten Temperaturgradienten mit zunehmender Ringzonenbreite überproportional steigen, sind Trägerkörperstücke mit geringer Blechbandbreite besonders vorteilhaft. Andererseits entfällt der erfindungsgemäße Vorteil einer ungehinderten radialen Dehnungsfreiheit der Matrixzellen bei Katalysator-Trägerkörpern deren Wickelbandbreite größer als die halbe axiale Ausdehnung der wendelförmigen Wicklung ist. Entsprechendes gilt auch für die Wickelbandbreite im Verhältnis zum äußeren Radius der Wicklung, weil das hohe Widerstandsmoment des gewellten Bandes quer zur Wellungsrichtung wegen der erforderlichen schraubenlinienförmigen Krümmung der Wellenlängsachse nur in geringem Maße eine konische Formung des Wickelkörpers in seiner Längsachse zuläßt. Bei zu großer Wickelbandbreite verbleibt ein großer Teil der Länge des Trägerkörpers über die Gesamtfläche des Querschnitts senkrecht zur Längsachse vollkommen mit Zellstrukturen gefüllt, so daß in diesem Teil der Matrix die vorgenannten Probleme unverändert auftreten. Dies trifft auch für den oben genannten Katalysatorkörper entsprechend der DE-A-29 05 241 zu.To achieve this object, a catalyst body according to the first claim is proposed. Thereafter, the ratio of the width of the sheet metal strips to the pitch or the outer radius of the helical winding should be selected so that no cross section through the winding cuts all layers of sheet metal strips, i.e. the axial dimension of the hollow-cone-like carrier matrix is greater than twice the width of the sheet metal strips . A catalyst carrier body designed in this way has the advantage that each cross section perpendicular to the longitudinal axis has only relatively narrow ring zones made of carrier matrix cells, which in the radial direction are not hampered by neighboring cells in terms of their freedom of expansion both outwards and inwards and are therefore not subject to any alternating plastic deformations with the previous carrier bodies. Since the expansion stresses of the matrix cells increase disproportionately with increasing ring zone width in relation to the temperature gradients distributed differently over the inflow surface, support body pieces with a small sheet metal strip width are particularly advantageous. On the other hand, the advantage according to the invention of unimpeded radial freedom from expansion of the matrix cells in the case of catalyst carrier bodies is eliminated Winding band width is greater than half the axial extent of the helical winding. The same applies to the winding tape width in relation to the outer radius of the winding, because the high section modulus of the corrugated tape transversely to the corrugation direction allows only a slight conical shape of the winding body in its longitudinal axis due to the required helical curvature of the shaft axis. If the winding bandwidth is too large, a large part of the length of the carrier body remains completely filled with cell structures over the entire area of the cross section perpendicular to the longitudinal axis, so that the aforementioned problems occur unchanged in this part of the matrix. This also applies to the above-mentioned catalyst body in accordance with DE-A-29 05 241.

In weiterer Ausgestaltung der Erfindung wird vorgeschlagen, daß die Trägermatrix eine Hohlkegelstumpfform haben soll. Sofern die Höhe des Hohlkegelstumpfes dabei immer noch größer als die zweifache Breite des Wickelbandes ist, bleiben die bisher beschriebenen Vorteile erhalten, so daß sich der innere Teil ohne Behinderung durch das Mantelrohr ausdehnen kann.In a further embodiment of the invention it is proposed that the support matrix should have a truncated cone shape. If the height of the hollow truncated cone is still greater than twice the width of the winding tape, the advantages described so far are retained, so that the inner part can expand without being obstructed by the casing tube.

In weiterer Ausgestaltung der Erfindung wird im Anspruch 3 vorgeschlagen, daß der Katalysator-Trägerkörper im Längsschnitt W-förmig gestaltet ist. Diese Form ergibt sich, wenn die Steigung beim Wickeln der Wendelförmigen Wicklung an einer Stelle ihr Vorzeichen wechselt. Sofern auch in diesem Falle die gesamte axiale Ausdehnung der wendelförmigen Wicklung die zweifache Breite der Wickelbänder überschreitet, bleiben die beschriebenen Vorteile erhalten. Bei dieser Anordnung, die insbesondere für Katalysatorkörper von größerem Durchmesser geeignet ist, werden die Einbaumaße gegenüber der normalkegeligen Form erheblich reduziert, ohne die Flexibilität der Matrix hinsichtlich der Dehnungsfreiheit einzuschränken. Die bisher beschriebenen Formen der Trägermatrix lassen sich durch eine zunächst spiralige Wicklung und anschließendes Drücken in die gewünschte Form herstellen.In a further embodiment of the invention it is proposed in claim 3 that the catalyst carrier body is W-shaped in longitudinal section. This shape results when the slope changes its sign at one point during the winding of the helical winding. If, in this case as well, the total axial extent of the helical winding exceeds twice the width of the winding tapes, the advantages described are retained. With this arrangement, which is particularly suitable for catalyst bodies of larger diameter, the installation dimensions are considerably reduced compared to the normal-conical shape, without restricting the flexibility of the matrix with regard to the freedom from expansion. The shapes of the carrier matrix described so far can be produced by initially winding them and then pressing them into the desired shape.

Im Anspruch 4 wird vorgeschlagen, daß der Trägerkörper aus mehreren mit Freiraumabstand axial hintereinander angeordneten Matrix-Teilstücken bestehen soll. Wegen der entsprechend dem vorliegenden Erfindungsgedanken geringeren Breite der Wickelbänder kann es sein, daß für eine ausreichende Katalyse mehrere Matrix-Teilstücke nötig sind. Die Aufteilung der Katalysator-Gesamtlänge in mehrere schmale Teilstücke mit dazwischenliegenden Freiräumen führt noch zu einem weiteren Vorteil in anderer Hinsicht. Berechnungen und Versuche haben gezeigt, daß bei den üblichen Abmessungen und den Gasgeschwindigkeiten in den parallelen Kanälen der bisherigen Abgaskatalysatoren die Strömung nach etwa 20-30 mm in den laminaren Zustand übergeht, der für die in einem Katalysator ablaufenden chemischen Vorgänge wegen der mangelnden Oberflächenkontaktierung des Abgases weniger günstig ist als eine turbulente Strömung. Durch die Aufteilung in mehrere in Strömungsrichtung hintereinander angeordnete Katalysator-Teilkörper wird jedes Katalysator-Teilstück nur im turbulenten Zustand angeströmt. wodurch die katalytische Wirksamkeit erheblich verbessert wird. Beim Austritt des Abgases aus dem vorhergehenden Katalysator-Teilstück in den Zwischenfreiraum zum nächsten Teilstück entsteht eine sehr gute Durchmischung des Abgases, die in Bezug auf die Wärmeverteilung, das Anspringverhalten und die Umsatzrate ebenfalls zur Verbesserung des katalytischen Wirkungsgrades beiträgt.In claim 4 it is proposed that the carrier body should consist of a plurality of matrix sections arranged axially one behind the other with a clearance. Because of the narrower width of the winding tapes in accordance with the present invention, it may be that several matrix sections are necessary for adequate catalysis. The division of the total catalyst length into several narrow sections with free spaces in between leads to a further advantage in other respects. Calculations and tests have shown that with the usual dimensions and the gas velocities in the parallel channels of the previous catalytic converters, the flow changes to the laminar state after about 20-30 mm, which is necessary for the chemical processes taking place in a catalytic converter because of the lack of surface contacting of the exhaust gas is less favorable than a turbulent flow. Due to the division into a plurality of partial catalyst bodies arranged one behind the other in the direction of flow, the flow to each catalyst portion is only in the turbulent state. which significantly improves the catalytic effectiveness. When the exhaust gas emerges from the previous catalyst section into the intermediate space to the next section, the exhaust gas mixes very well, which also contributes to improving the catalytic efficiency in terms of heat distribution, light-off behavior and conversion rate.

Es erscheint zweckmäßig, daß die im ersten Anspruch vorgeschlagene kegelartige Form des Katalysatorkörpers der Anströmrichtung des heißen Abgases entgegengerichtet ist. Bei dieser Anordnung, die auch noch durch eine entsprechende konische Form des Gehäuses verbessert werden kann, werden die heißen Abgase von der Mitte etwas mehr als bisher zu den Randbezirken des Katalysatorkörpers umgeleitet, so daß die heißen Gase gleichmäßiger als bisher über den Querschnitt des Katalysatorkörpers verteilt werden.It appears expedient that the cone-like shape of the catalyst body proposed in the first claim is opposite to the direction of flow of the hot exhaust gas. In this arrangement, which can also be improved by a corresponding conical shape of the housing, the hot exhaust gases are diverted from the center a little more than before to the peripheral areas of the catalyst body, so that the hot gases are distributed more uniformly than previously over the cross section of the catalyst body will.

Die Figuren zeigen Ausführungsbeispiele der Erfindung.

  • Figur 1 zeigt einen Längsschnitt durch einen rotationssymmetrischen Abgaskatalysator, bestehend aus drei Katalysator-Teilkörpern von hohlkegeliger Form in einem zylindrischen Mantelrohr.
  • Fig. 2 zeigt einen Querschnitt A-A durch Fig. 1.
  • Fig. 3 zeigt die Schnittkontur eines einzelnen Katalysatorkörpers von kegelstumpfartiger Form.
  • Fig. 4 zeigt ebenfalls die Schnittkontur eines einzelnen Katalysatorkörpers mit einem W-förmigen Längsschnitt.
The figures show exemplary embodiments of the invention.
  • Figure 1 shows a longitudinal section through a rotationally symmetrical exhaust gas catalytic converter, consisting of three catalytic converter bodies of hollow conical shape in a cylindrical jacket tube.
  • FIG. 2 shows a cross section AA through FIG. 1.
  • Fig. 3 shows the sectional contour of a single catalyst body of the shape of a truncated cone.
  • Fig. 4 also shows the sectional contour of a single catalyst body with a W-shaped longitudinal section.

In Fig. 1 sind die kegelförmigen Katalysator-Trägerkörper 1 in dreifacher Stückzahl in dem zylindrischen Mantelrohr 2 befestigt, das über konische Übergangsstücke 3 und 5 mit den zylindrischen Rohrstutzen 4 und 6 verbunden ist. Der Pfeil am Rohrstutzen 4 zeigt die Strömungsrichtung des eintretenden Abgases an. Es ist erkannbar, daß die Strömung aufgrund der konischen Form und aufgrund des Widerstandes im Katalysatorkörper auf den gesamten Querschnitt des Katalysatorkörpers verteilt wird. Die Katalysatorkörper sind, wie aus Fig. 2 ersichtlich ist, in an sich bekannter Weise aus jeweils einem glatten 8 und einem gewellten 7 Blechband aufgewickelt, wobei z. B. die äußere Lage aus einem gewellten Blechband an der Innenfläche des Mantelrohres 2 anliegt. Entsprechend der vorliegenden Erfindung sind die Blechbänder vergleichsweise schmal und wendelförmig aufgewickelt. Die Breite b der Blechbänder und die Steigung s der wendelförmigen Wicklung, sowie die axiale Gesamtausdehnung h der wendelförmigen Wicklungen sind in Fig. 1 eingezeichnet. Es ist zu erkennen, daß ein Schnitt senkrecht zur Längsachse des Katalysator-Trägerkörpers nur dann niemals alle Wicklungslagen schneiden kann, wenn die axiale Ausdehnung h mehr als doppelt so groß ist wie die Breite der Wickelbänder b.In Fig. 1, the conical catalyst carrier body 1 are attached in triplicate in the cylindrical jacket tube 2, which is connected via conical transition pieces 3 and 5 to the cylindrical pipe socket 4 and 6. The arrow on the pipe socket 4 shows the direction of flow of the incoming exhaust gas. It can be seen that the flow is distributed over the entire cross section of the catalyst body due to the conical shape and due to the resistance in the catalyst body. The catalyst bodies are, as can be seen from Fig. 2, wound in a conventional manner from a smooth 8 and a corrugated 7 sheet metal strip, z. B. the outer layer of a corrugated metal strip rests on the inner surface of the casing tube 2. According to the present invention, the sheet metal strips are wound comparatively narrow and helically. The width b of the metal strips and the slope s of the helical winding, and the overall axial extent h of the helical windings are shown in FIG. 1. It can be seen that a cut perpendicular to the longitudinal axis of the catalyst carrier body can only cut all winding layers only if if the axial extent h is more than twice the width of the winding tapes b.

In Fig. 3 und 4 werden weitere Ausgestaltungsformen für die Abgaskatalysator-Trägerkörper dargestellt. Dabei zeigt Fig. 3 eine hohlkegelstumpfförmige Trägermatrix 9 und Fig. 4 eine W-förmige Form 10. Axial betrachtet sehen diese Ausführungen aus, wie in Fig. 2 dargestellt.3 and 4 show further embodiments for the exhaust gas catalyst carrier body. 3 shows a frustoconical support matrix 9 and FIG. 4 shows a W-shaped shape 10. Viewed axially, these designs look as shown in FIG. 2.

Claims (4)

1. A catalyst support body for internal combustion engines consisting of a supporting matrix with flat (8) and/or corrugated (7) sheet-metal strips which are spirally and, at least in subregions, helically wound and are connected to one another and to the inner side of a casing (20) by welding, soldering or sticking, characterised in that the ratio of the width (b) of the sheet-metal strips (7, 8) to the slope(s) of the helix or the diameter of the supporting matrix is so selected that no cross-section through the winding cuts all the sheet-metal strip layers, i. e. the axial spread (h) of the supporting matrix, which is in the form of a hollow cone, is greater than twice the width (b) of the sheet-metal strips (7, 8).
2. A catalyst support body as claimed in Claim 1, characterised in that the supporting matrix is in the form of a truncated hollow cone (9).
3. A catalyst support body as claimed in Claim 1, characterised in that in longitudinal section, the supporting matrix is W-shaped (10).
4. A catalyst support body as claimed in Claim 1, 2 or 3, characterised in that the support body consists of a plurality of partial matrix components which are axially arranged one behind another at spaced intervals.
EP84103016A 1983-03-30 1984-03-19 Helically wound conical shape metal strip catalyst supporting matrix for internal-combustion engines Expired EP0121175B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84103016T ATE25128T1 (en) 1983-03-30 1984-03-19 CATALYST CARRIER FOR INTERNAL COMBUSTION ENGINES MADE OF CONICALLY HELICALLY WRAPPED SHEET METAL STRIPS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833311724 DE3311724A1 (en) 1983-03-30 1983-03-30 CATALYST CARRIER BODY FOR INTERNAL COMBUSTION ENGINES MADE OF CONICALLY WINDED STRIPS
DE3311724 1983-03-30

Publications (2)

Publication Number Publication Date
EP0121175A1 EP0121175A1 (en) 1984-10-10
EP0121175B1 true EP0121175B1 (en) 1987-01-21

Family

ID=6195175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84103016A Expired EP0121175B1 (en) 1983-03-30 1984-03-19 Helically wound conical shape metal strip catalyst supporting matrix for internal-combustion engines

Country Status (3)

Country Link
EP (1) EP0121175B1 (en)
AT (1) ATE25128T1 (en)
DE (2) DE3311724A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803189A (en) * 1986-05-12 1989-02-07 Interatom Gmbh Catalyst carrier of metallic honeycomb having a supporting wall and a method for producing the same
US5146743A (en) * 1988-04-25 1992-09-15 Emitec Gesellschaft Fur Emissionstechnologie Mbh Process for accelerating the response of an exhaust gas catalyst, and apparatus and electrically heatable carrier bodies for performing the method
US5340020A (en) * 1989-06-20 1994-08-23 Emitec Gesellschaft Fuer Emissiontechnologie Mbh Method and apparatus for generating heat by flameless combustion of a fuel in a gas flow
DE19749379A1 (en) * 1997-11-07 1999-05-20 Emitec Emissionstechnologie Catalyst carrier body with improved heat radiation
US6109386A (en) * 1998-02-03 2000-08-29 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Honeycomb body with a flattened cross-sectional region and a method for producing the honeycomb body

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3444472C1 (en) * 1984-12-06 1986-02-13 Daimler-Benz Ag, 7000 Stuttgart Exhaust filter for diesel engines
DE3543011A1 (en) * 1985-12-05 1987-06-11 Sueddeutsche Kuehler Behr Matrix for a catalyst
DE3638082C2 (en) * 1986-11-07 1995-04-20 Emitec Emissionstechnologie Exhaust line with hollow cone-shaped catalyst carrier bodies
DE4024942A1 (en) * 1990-08-06 1992-02-13 Emitec Emissionstechnologie MONOLITHIC METAL HONEYCOMB WITH VARIOUS CHANNEL NUMBER
DE19650647A1 (en) * 1996-12-06 1997-04-24 Audi Ag Energy-absorbing deformation element for vehicles
US20020076365A1 (en) * 2000-12-14 2002-06-20 Detroit Diesel Corporation Emission control catalyst assembly for an engine of a motor vehicle
JP5501632B2 (en) 2009-02-16 2014-05-28 日本碍子株式会社 Honeycomb structure
DE102011081490A1 (en) * 2011-08-24 2013-02-28 Bayerische Motoren Werke Aktiengesellschaft New catalyst with a support arranged in a cladding tube, where the catalyst support is from a honeycomb body having many flow direction of the exhaust gas extending channels, useful to purify exhaust gases from a combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2552615A (en) * 1948-05-29 1951-05-15 Lawrence F Baltzer Muffler with spiral conical insert
US2995200A (en) * 1959-10-23 1961-08-08 Seifert Vernon Exhaust muffler for engines
DE2905241A1 (en) * 1979-02-12 1980-08-14 Bremshey Ag Catalyst carrier for engine exhaust purifier - has flat and corrugated catalyst-coated metal strips wound into conical honeycomb insert

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803189A (en) * 1986-05-12 1989-02-07 Interatom Gmbh Catalyst carrier of metallic honeycomb having a supporting wall and a method for producing the same
US4946822A (en) * 1986-05-12 1990-08-07 Interatom Gmbh Catalyst carrier body having a supporting wall and a method for producing the same
US5146743A (en) * 1988-04-25 1992-09-15 Emitec Gesellschaft Fur Emissionstechnologie Mbh Process for accelerating the response of an exhaust gas catalyst, and apparatus and electrically heatable carrier bodies for performing the method
US5322672A (en) * 1988-04-25 1994-06-21 Emitec Gesellschaft Fuer Emissionstechnologie Electrically conductive honeycomb body, and method of monitoring and operating it as an exhaust gas catalyst carrier body
US5480621A (en) * 1988-04-25 1996-01-02 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Electrically conductive honeycomb as an exhaust gas catalyst carrier body
US5340020A (en) * 1989-06-20 1994-08-23 Emitec Gesellschaft Fuer Emissiontechnologie Mbh Method and apparatus for generating heat by flameless combustion of a fuel in a gas flow
DE19749379A1 (en) * 1997-11-07 1999-05-20 Emitec Emissionstechnologie Catalyst carrier body with improved heat radiation
WO1999024700A1 (en) * 1997-11-07 1999-05-20 Emitec Gesellschaft Für Emissionstechnologie Mbh Catalytic converter supported body with open heat radiating areas
US6528454B1 (en) 1997-11-07 2003-03-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Catalyst carrier body with exposed heat-radiating surfaces
DE19881673B4 (en) * 1997-11-07 2007-08-02 Emitec Gesellschaft Für Emissionstechnologie Mbh Catalyst support body with exposed heat radiation surfaces
US6109386A (en) * 1998-02-03 2000-08-29 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Honeycomb body with a flattened cross-sectional region and a method for producing the honeycomb body

Also Published As

Publication number Publication date
DE3311724A1 (en) 1984-10-04
EP0121175A1 (en) 1984-10-10
DE3462171D1 (en) 1987-02-26
ATE25128T1 (en) 1987-02-15

Similar Documents

Publication Publication Date Title
EP0121175B1 (en) Helically wound conical shape metal strip catalyst supporting matrix for internal-combustion engines
DE2302746A1 (en) CARRIER MATRIX FOR A CATALYTIC REACTOR FOR EXHAUST GAS CLEANING IN COMBUSTION MACHINES, ESPEC. GASOLINE ENGINES OF MOTOR VEHICLES AND A MANUFACTURING PROCESS
DE2314465A1 (en) DEVICE FOR CATALYTIC EXHAUST GAS CLEANING
DE4024942A1 (en) MONOLITHIC METAL HONEYCOMB WITH VARIOUS CHANNEL NUMBER
EP0929738B1 (en) Honeycombed body with heat insulation, preferably for an exhaust gas catalyzer
EP0216130A1 (en) Expansion-compensated metallic exhaust catalyst support body and sheet metal for its manufacture
DE4313187A1 (en) Metallic support body for exhaust gas purifying catalyst material
DE4014214A1 (en) Insulating gap between honeycomb catalyser matrix and casing - in vehicle exhaust purifier is bridged by helical or annular fins
WO2002040838A1 (en) Radially cross-flowable segmented honeycomb bodies
DE10004545A1 (en) Honeycomb composite for exhaust gas system contains heat accumulator of predeterminable volume and with surface larger than that of individual cylindrical heat accumulator of same volume
DE4014444A1 (en) EXHAUST GAS PURIFICATION DEVICE
EP0121174B1 (en) Catalyst supporting matrix with expansion slots for internal-combustion engines
DE4411302C1 (en) Process for the preparation of a coated, monolithic supported catalyst
DE2337034A1 (en) HEAT-RESISTANT COMB-SHAPED STRUCTURE AND METHOD FOR MANUFACTURING IT
DE3926072C2 (en) Exhaust gas purification catalyst with elastic elements to compensate for longitudinal expansion
DE3312944A1 (en) Stress-relaxed metal support housing for exhaust gas catalysts having high thermal operating load
DE10392744B4 (en) Non-cylindrical catalyst support body and process for its production
EP0356907B1 (en) Carrier body for a catalytic reacter for cleaning exhaust gas
DE60209970T2 (en) metal substrate
DE10225278A1 (en) Exhaust gas catalyst and catalyst body, preferably for cleaning exhaust gases from internal combustion engines
EP1922148B1 (en) Method for producing an annular honeycomb body, and annular honeycomb body
EP0969929B1 (en) Honeycomb body, in particular catalyst support body, with a reinforced wall structure
WO1999024700A1 (en) Catalytic converter supported body with open heat radiating areas
DE3638082C2 (en) Exhaust line with hollow cone-shaped catalyst carrier bodies
DE10137878A1 (en) Exhaust gas catalytic converter with expansion-compensating bearing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19850227

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INTERATOM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 25128

Country of ref document: AT

Date of ref document: 19870215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3462171

Country of ref document: DE

Date of ref document: 19870226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870331

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890224

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19890308

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890322

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890331

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890623

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19900319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900331

Ref country code: CH

Effective date: 19900331

Ref country code: BE

Effective date: 19900331

BERE Be: lapsed

Owner name: INTERATOM G.M.B.H.

Effective date: 19900331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19901001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 84103016.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980325

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990320

EUG Se: european patent has lapsed

Ref document number: 84103016.6

EUG Se: european patent has lapsed

Ref document number: 84103016.6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020225

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020318

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020524

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031127

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST