DE19640807A1 - Noninvasive optical detection of oxygen supply to e.g. brain or liver - Google Patents

Noninvasive optical detection of oxygen supply to e.g. brain or liver

Info

Publication number
DE19640807A1
DE19640807A1 DE1996140807 DE19640807A DE19640807A1 DE 19640807 A1 DE19640807 A1 DE 19640807A1 DE 1996140807 DE1996140807 DE 1996140807 DE 19640807 A DE19640807 A DE 19640807A DE 19640807 A1 DE19640807 A1 DE 19640807A1
Authority
DE
Germany
Prior art keywords
detector
light
signals
transmitter
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE1996140807
Other languages
German (de)
Inventor
Klaus Dipl Phys Abraham-Fuchs
Helmut Dipl Phys Reichenberger
Oliver Dipl Phys Dr Schuetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE1996140807 priority Critical patent/DE19640807A1/en
Publication of DE19640807A1 publication Critical patent/DE19640807A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4222Evaluating particular parts, e.g. particular organs
    • A61B5/4244Evaluating particular parts, e.g. particular organs liver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • A61B2562/0242Special features of optical sensors or probes classified in A61B5/00 for varying or adjusting the optical path length in the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14553Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted for cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal

Abstract

The measurement is made with a beam (9) emitted from a laser (5) of suitable wavelength (500 to 1200 nm) through a beam-splitter (14) to the organ (10) concerned. The reflected (reference) portion of the beam is directed at a phantom (15) whose back-scatter is measured by a matrix detector (17) similar to that (8) associated with the organ. Electronic circuits (18,12) convey the measurements to a processor (13) which separates the O2 saturation signal originating in the organ from the interference arising from the overlying tissue.

Description

Klinisch angewandt werden nichtinvasive Verfahren der Oxime­ trie in großem Umfang bei der sogenannten Pulsoximetrie, bei der z. B. ein Finger mit Licht geeigneter Wellenlängen durch­ strahlt wird. Ebenso ist die Überwachung der Sauerstoffversor­ gung der Gehirnoberfläche, z. B. des Fötus während der Geburt durch auf der Kopfhaut applizierte optische Sensoren bekannt (US 5,494,032).Oxime non-invasive procedures are used clinically on a large scale in so-called pulse oximetry the z. B. a finger with light of suitable wavelengths shines. Monitoring is also the oxygen supply supply of the brain surface, e.g. B. the fetus during childbirth known from optical sensors applied to the scalp (US 5,494,032).

Aufgabe der Erfindung ist es, eine Vorrichtung zur nichtinva­ siven optischen Erfassung der Sauerstoffversorgung von Organen wie z. B. Gehirn oder Leber, sowie des Föten, zu entwickeln, wenn diese durch relativ dicke Gewebeschichten vom Detektor getrennt sind.The object of the invention is to provide a device for noninva sive optical detection of the oxygen supply to organs such as B. brain or liver, as well as fetus, if this is due to relatively thick layers of tissue from the detector are separated.

Diese Aufgabe ist erfindungsgemäß gelöst durch die Merkmale des Patentanspruches 1.According to the invention, this object is achieved by the features of claim 1.

Basis der Erfindung ist, die Sauerstoffversorgung eines Or­ gans, wie z. B. des Gehirns, der Leber oder auch eines ungebo­ renen Kindes, nichtinvasiv durch Oximetrie mittels Laserlicht geeigneter Wellenlängen zu diagnostizieren.The basis of the invention is the oxygen supply of an Or goose, such as B. the brain, the liver or an ungebo child, non-invasive by oximetry using laser light diagnose suitable wavelengths.

Genutzt wird dabei die Eigenschaft, daß Gewebe relativ trans­ parent für sichtbares Licht, NIR- und IR-Licht ist. Durch Wahl geeigneter Wellenlängen (mindestens zwei) ist es daher mög­ lich, die Gewebeoxigenierung zu bestimmen (z. B. Pulsoxime­ trie). Da bei der nichtinvasiven Oximetrie zur Diagnose der Sauerstoffversorgung z. B. des ungeborenen Kindes relativ dicke Gewebeschichten durchstrahlt werden müssen, kann die sehr hohe Streueigenschaft des Gewebes für Licht im oben ge­ nannten Wellenlängenbereich nicht vernachlässigt werden.The property that tissue is relatively trans is used parent for visible light, NIR and IR light. By choice suitable wavelengths (at least two) it is therefore possible to determine tissue oxygenation (e.g. pulse oximes trie). Since in non-invasive oximetry for the diagnosis of Oxygenation z. B. the unborn child relative thick layers of tissue need to be irradiated, the very high scattering property of the fabric for light in the above ge mentioned wavelength range should not be neglected.

Die Erfindung ist nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:The invention is based on one in the drawing illustrated embodiment explained in more detail. Show it:

Fig. 1 eine schematische Darstellung einer Vorrichtung nach der Erfindung und Fig. 1 is a schematic representation of a device according to the invention and

Fig. 2 das Blockschaltbild für die Vorrichtung gemäß Fig. 1. FIG. 2 shows the block diagram for the device according to FIG. 1.

In der Fig. 1 ist ein Meßobjekt 1 dargestellt, das durch eine Schicht 2 von der Körperoberfläche getrennt ist. Die Schicht 2 ist in eine tieferliegende Schicht 3 und eine oberflächennahe Schicht 4 aufgeteilt. Zur Messung ist eine Laser-Lichtquelle 5 vorgesehen, die einen Lichtstrahl aussendet, der entweder di­ rekt oder über eine Faseroptik 6 auf die Körperoberfläche 7 gerichtet wird. Das Laserlicht wird gestreut und von einem Ma­ trix-Detektor 8 erfaßt und in entsprechende elektrische Si­ gnale gewandelt. Die Lichtquelle 5 kann auch von mehreren Ein­ zel-Lichtquellen, z. B. Dioden, gebildet sein.In FIG. 1, a measurement object 1 is shown, which is separated by a layer 2 of the body surface. Layer 2 is divided into a deeper layer 3 and a layer 4 near the surface. For the measurement, a laser light source 5 is provided, which emits a light beam that is either directly or directed onto the body surface 7 via a fiber optic 6 . The laser light is scattered and detected by a Ma trix detector 8 and converted into corresponding electrical signals. The light source 5 can also be from several single light sources, e.g. B. diodes.

Die Fig. 2 zeigt den von der Lichtquelle 5 ausgesandten Licht­ strahl 9, der auf den Patienten 10 auftrifft. Das rückge­ streute Licht (Pfeile 11) wird vom Detektor 8 erfaßt und über eine Elektronik 12 einer digitalen Auswerteeinheit 13 zuge­ führt, die die Lichtquelle 5 steuert. Fig. 2 shows the light emitted from the light source 5 light beam 9 incident on the patient 10. The backscattered light (arrows 11 ) is detected by the detector 8 and supplied via electronics 12 to a digital evaluation unit 13 which controls the light source 5 .

Die Fig. 2 zeigt eine Ausführungsform mit einem Strahlteiler 14, der einem kalibriertem Meßphantom 15 einen Referenzstrahl zuführt. Das vom Meßphantom 15 rückgestreute Licht (Pfeile 16) wird von einem ebenfalls als Matrix ausgebildetem Detektor 17 erfaßt und entsprechende Signale durch eine Elektronik 18 der Auswerteeinheit 13 zugeführt. FIG. 2 shows an embodiment with a beam splitter 14 , which feeds a reference beam to a calibrated measurement phantom 15 . The light backscattered by the measuring phantom 15 (arrows 16 ) is detected by a detector 17 , which is also designed as a matrix, and corresponding signals are fed to the evaluation unit 13 by electronics 18 .

Aufgrund der starken Streuung im Gewebe durchläuft das Licht einen näherungsweise bananenförmigen Gewebebereich vom Ein­ strahlpunkt zum Detektionspunkt. Die mittlere Eindringtiefe hängt dabei wesentlich vom Sender-Detektor-Abstand ab, d. h. je größer der Sender-Detektor-Abstand ist, um so größer ist die mittlere Eindringtiefe des detektierten Lichtes.Due to the strong scatter in the tissue, the light passes through an approximately banana-shaped tissue area from the on beam point to the detection point. The mean depth of penetration depends essentially on the transmitter-detector distance, d. H.  the larger the transmitter-detector distance, the greater the mean penetration depth of the detected light.

Mittels der Diffusionstheorie ist es möglich, aus den Meßdaten rückzurechnen auf optischen Streu- und Absorptionskoeffizien­ tenBy means of diffusion theory it is possible to derive from the measurement data to calculate back on optical scattering and absorption coefficients ten

Mit R(ρ) ist die Intensität des rückgestreuten Lichtes im Ab­ stand ρ vom Sender bezeichnet, I₀ ist die applizierte Lichtin­ tensität,With R (ρ) the intensity of the backscattered light is down stood ρ by the transmitter, I₀ is the applied light intensity,

µ′s der reduzierte Streukoeffizient,µ ′ s the reduced scattering coefficient,

und A der Reflexionsfaktor, abhängig vom Brechungsindex von Gewebe.and A the Reflection factor, depending on the refractive index of tissue.

Für eine quantitative Bestimmung ist jedoch unter anderem die Kenntnis der applizierten Lichtleistung I₀ notwendig. Dieses Problem kann wie folgt umgangen werden: Es wird vorgeschlagen, das Licht der Lichtquelle 5 aufzuteilen, so daß bei genau be­ kanntem TeilungsverhältnisHowever, knowledge of the applied light output I der is necessary for a quantitative determination. This problem can be avoided as follows: It is proposed to divide the light of the light source 5 so that with a known division ratio be

der eine Teilstrahl 9 das Meßobjekt durchläuft, der Referenzstrahl 16, z. B. bei glei­ cher Optrodenanordnung wie am Meßobjekt, d. h. gleichem Optro­ denabstand, das kalibrierte Meßphantom 15 mit bekannten opti­ schen Parametern (Fig. 2). Durch geeignete Auswertung der rückgestreuten Intensitäten im Abstand ρ z. B.a partial beam 9 passes through the measurement object, the reference beam 16 , e.g. B. with the same cher optrode arrangement as on the test object, ie the same Optro denabstand, the calibrated phantom 15 with known opti's parameters ( Fig. 2). By appropriate evaluation of the backscattered intensities at a distance ρ z. B.

werden Schwankungen der Lichtquelle 5 eliminiert und haben dadurch keinen Einfluß mehr auf die Bestimmung der opti­ schen Parameter. Mit dieser Meßkonfiguration ist es dann mög­ lich, bei homogenen Proben die unbekannten optischen Eigen­ schaften (Absorptionskoeffizient, reduzierter Streukoeffizi­ ent) quantitativ zu bestimmen, indem mehrere Messungen bei verschiedenen Optrodenabständen durchgeführt werden.Fluctuations in the light source 5 are eliminated and therefore no longer have any influence on the determination of the optical parameters. With this measurement configuration, it is then possible to quantitatively determine the unknown optical properties (absorption coefficient, reduced scattering coefficient) of homogeneous samples by carrying out several measurements at different optrode distances.

Es wird vorgeschlagen, bei mehreren Wellenlängen obige Messun­ gen durchzuführen, da dann aus den optischen Eigenschaften des Meßobjektes bei den entsprechenden Wellenlängen der Oxigenie­ rungsgrad des Meßobjektes bestimmt werden kann.It is proposed to measure the above at several wavelengths gene to carry out because then from the optical properties of the Target at the corresponding wavelengths of oxygen degree of measurement of the measurement object can be determined.

Um der unterschiedlichen Gewebezusammensetzung am lebenden Ob­ jekt Rechnung zu tragen, wird vorgeschlagen, mit obiger Meß­ anordnung bis zu einem Abstand von typisch einigen Zentimetern von der Lichtquelle in Inkrementen von typischerweise einigen Millimetern das rückgestreute Licht zu detektieren, in der Da­ tenanalyse mindestens je zwei Meßpunkte zu einem Auswertein­ tervall zusammenzufassen und für jedes Auswerteintervall die mittleren optischen Gewebeparameter zu bestimmen (Fig. 1).In order to take into account the different tissue composition on the living object, it is proposed to detect the backscattered light with the above measuring arrangement up to a distance of typically a few centimeters from the light source in increments of typically a few millimeters, in the data analysis at least two measuring points each to an evaluation interval and to determine the mean optical tissue parameters for each evaluation interval ( FIG. 1).

Im Auswerteintervall mit kleinen Sender-Detektor-Abständen von z. B. 5 mm bis 10 mm erstreckt sich die bananenförmige Licht­ verteilung im wesentlichen z. B. auf die unter der Haut lie­ gende Fettschicht. Entsprechend werden deren optische Parame­ ter bestimmt, wenn in diesem Auswerteintervall bei mehreren Sender-Detektor-Abständen die rückgestreute Lichtintensität detektiert wird. Im nächstgrößeren Auswerteintervall erfaßt die Lichtverteilung sowohl die oberflächennahe Fettschicht als auch z. B. den tieferliegenden Bauchmuskel. Wird nun auch in diesem Auswerteintervall bei mehreren Sender-Detektor-Abstän­ den die rückgestreute Lichtintensität detektiert, wird obige Auswertung optische Absorptions- und Streukoeffizienten lie­ fern, die eine gewichtete Mittelung der entsprechenden Gewebe­ schichten darstellen.In the evaluation interval with small transmitter-detector intervals of e.g. B. 5 mm to 10 mm extends the banana-shaped light distribution essentially z. B. on the lie under the skin layer of fat. Their optical parameters are correspondingly ter determines if there are several in this evaluation interval Transmitter-detector distances the backscattered light intensity is detected. Recorded in the next larger evaluation interval the light distribution both the near-surface fat layer and also z. B. the lower abdominal muscle. Now also in this evaluation interval with several transmitter-detector intervals which the backscattered light intensity detects is the above Evaluation of optical absorption and scattering coefficients lie distant, the weighted averaging of the corresponding tissues depict layers.

Da die optischen Eigenschaften der oberflächennahen Schicht 4 bei kleinen Abständen bestimmt wurden, können aus den Daten bei größeren Abständen die optischen Eigenschaften der tiefer­ liegenden Schicht berechnet werden. Durch sukzessives Auswer­ ten der folgenden Auswerteintervalle lassen sich somit für jede Gewebeschicht die optischen Parameter bestimmen und wenn, wie vorgeschlagen, zusätzlich bei mehreren geeigneten Wellen­ längen gemessen wird, läßt sich auch der Oxigenisierungszu­ stand bestimmen.Since the optical properties of the near-surface layer 4 were determined at small distances, the optical properties of the deeper layer can be calculated from the data at larger distances. By successively evaluating the following evaluation intervals, the optical parameters can thus be determined for each tissue layer and if, as suggested, measurements are also carried out at several suitable wavelengths, the oxygenation status can also be determined.

Vorgeschlagen wird, obiges Verfahren für mindestens zwei unab­ hängige Lichtwege durchzuführen, deren Signale korreliert aus­ gewertet werden. Als unabhängige Lichtwege wird verstanden, daß z. B. die eine Meßreihe mit entsprechender Sender-Empfän­ ger-Anordnung links am Bauch der Mutter durchgeführt wird, die zweite gleichzeitig rechts am Bauch. Als unabhängige Lichtwege wird auch verstanden, z. B. am Patienten die eine Meßreihe mit Sender-Detektor in Richtung oben nach unten durchzuführen, die andere Meßreihe z. B. mit Sender-Detektor in Richtung links nach rechts.It is suggested that the above procedure for at least two independent to carry out dependent light paths, the signals of which correlate get ranked. Independent light paths are understood to mean that z. B. the one series of measurements with corresponding transmitter-receiver ger arrangement is performed on the left of the mother's abdomen second at the same time on the right side of the stomach. As independent light paths is also understood, e.g. B. on the patient with a series of measurements Transmitter detector to perform the top down direction other series of measurements z. B. with transmitter detector in the left direction to the right.

Eine weitere Ausführungsform der Erfindung besteht darin, mit nur einem Sender, aber z. B. einem Detektorarray in x-Richtung und einem zweiten Detektorarray in y-Richtung Oximetrie an Or­ ganen oder am Föten durchzuführen.Another embodiment of the invention consists in only one transmitter, but e.g. B. a detector array in the x direction and a second detector array in the y-direction oximetry at Or ganen or fetuses.

Eine weitere Ausführungsform der Erfindung besteht darin, mit einem zweidimensionalen Detektorarray die rückgestreuten Lichtintensitäten als Funktion des Sender-Detektor-Abstandes zu erfassen. Die Position des Senders kann dabei am Rand des zweidimensionalen Detektorarrays liegen oder zentral, wobei in geeigneter Weise das Senderlicht durch entsprechende Vorrich­ tungen (z. B. Bohrung im Detektorarray) dem Meßobjekt zuge­ führt wird.Another embodiment of the invention consists in a two-dimensional detector array Light intensities as a function of the transmitter-detector distance capture. The position of the transmitter can be on the edge of the two-dimensional detector arrays are located or centrally, wherein in suitably the transmitter light by appropriate Vorrich lines (e.g. drill hole in the detector array) to the test object leads.

Als Sonderfall wird folgende Ausführung vorgeschlagen: Da bei größeren Sender-Detektor-Abständen die optischen Eigenschaften oberflächennaher Schichten zwischen Lichteintrittszone und Lichtaustrittszone verschieden sein können, wird vorgeschla­ gen, die gleiche Messung durchzuführen, jedoch Lichteinstrahl­ punkt und Detektionspunkt zu vertauschen. Technisch läßt sich das z. B. wie folgt realisieren: Das Licht wird von der Licht­ quelle mittels Faser zum Meßobjekt geführt, entsprechend das zu detektierende Licht mittels Faser zum Detektor. Durch z. B. einen optischen Schalter lassen sich dann sehr schnell Ein­ strahl- und Detektionspunkt vertauschen.The following version is proposed as a special case: larger transmitter-detector distances the optical properties layers near the surface between the light entry zone and Light exit zone can be different is suggested to carry out the same measurement, but with light  swap point and detection point. Technically, the Z. B. Realize as follows: The light is from the light source led to the object to be measured using fiber, corresponding to the Light to be detected by means of fiber to the detector. By z. B. an optical switch can then be switched on very quickly Swap beam and detection point.

Um die Meßanordnung unempfindlich gegen Umgebungslicht zu ma­ chen, wird vorgeschlagen, die Lichtsignale in der Intensität zu modulieren (lock in-Technik). Dadurch ist es auch möglich, während der Messung mit mehreren Wellenlängen gleichzeitig zu arbeiten, wenn deren Modulationsfrequenz leicht unterschied­ lich ist, z. B. 10 mHz plus/minus einige kHz.To make the measuring arrangement insensitive to ambient light Chen, it is suggested the light signals in intensity to modulate (lock in technique). This also makes it possible during the measurement with several wavelengths simultaneously work if their modulation frequency differed slightly is Lich z. B. 10 mHz plus / minus a few kHz.

Um die Meßanordnung unempfindlich gegen Störungen quasiperi­ odischer Vorgänge, wie Atmung oder Herzaktivität des Patien­ ten, bzw. von Mutter und Fötus bedingten Störeinflüssen wie Abstands- oder Lageänderungen, zu machen, wird vorgeschlagen, die Messungen mit der Atemfrequenz synchronisiert durchzufüh­ ren und auszuwerten und/oder mit EKG oder Puls zu korrelieren.To make the measuring arrangement insensitive to quasiperi interference ical processes such as breathing or cardiac activity of the patient interferences caused by mother and fetus such as It is proposed to make changes in distance or position, perform the measurements synchronized with the respiratory rate and evaluate and / or correlate with ECG or pulse.

Um bei Messungen am Föten aus dem Meßsignal das fötale und das mütterliche Oxigenierungssignal separieren zu können, wird vorgeschlagen, über bekannte Verfahren (Ultraschall, fötaler Herzschall oder EKG) die Messung zusätzlich mit dem Herzschlag des Kindes zu synchronisieren.To determine the fetal and the to be able to separate maternal oxygenation signal suggested using known methods (ultrasound, fetal Heart sound or EKG) the measurement additionally with the heartbeat synchronize the child.

Vorgeschlagen wird, Lichtquelle (Sender) bzw. Detektoren (Empfänger) bzw. die entsprechende Faseroptik mit anderen Ap­ plikatoren zu kombinieren, wieIs proposed light source (transmitter) or detectors (Receiver) or the corresponding fiber optics with other Ap to combine plicators like

  • a) Ultraschallwandler (B-Bild zur Abstandsmessung von der Haut bis zur Organoberfläche, z. B. Cortex, Leber, Kopf oder Rücken des Föten)a) Ultrasonic transducer (B-image for measuring the distance from the Skin up to the organ surface, e.g. B. cortex, liver, head or back of the fetus)
  • b) Elektroden für mütterliches/kindliches EKGb) Electrodes for maternal / childish ECG
  • c) Druckaufnehmer für Wehendruckc) pressure transducers for labor pressure
  • d) Atemsensord) breathing sensor

Zur Realisierung wird folgendes festgehalten:The following is noted for implementation:

  • 1. Die Erfindung betrifft eine Vorrichtung zur Untersuchung von Gewebe mit Licht unterschiedlicher Wellenlängen.
    Derartige Vorrichtungen können mit sichtbarem, NIR- oder IR-Licht arbeiten. Die Wellenlänge des sichtbaren Lichtes liegt zwischen 380 nm und 780 nm, die von NIR-Licht, d. h. Nah-Infrarot-Licht, zwischen 780 nm und 1500 nm und die von IR-Licht, also infrarotem Licht, zwischen 1500 nm und 1 mm, wobei für die Vorrichtung der eingangs genannten Art der Wellenlängenbereich von 500 nm bis 1200 nm besonders geeignet ist.
    1. The invention relates to a device for examining tissue with light of different wavelengths.
    Such devices can work with visible, NIR or IR light. The wavelength of visible light is between 380 nm and 780 nm, that of NIR light, ie near-infrared light, between 780 nm and 1500 nm and that of IR light, ie infrared light, between 1500 nm and 1 mm, the wavelength range from 500 nm to 1200 nm being particularly suitable for the device of the type mentioned at the outset.
  • 2. Als Lichtquelle kommen z. B. Laserdioden oder LEDs mit geeigneter Emissionswellenlänge in Frage.2. As a light source come z. B. laser diodes or LEDs suitable emission wavelength in question.
  • 3. Die Ankopplung des Lichtes an das Meßobjekt kann z. B. direkt oder mit Lichtleiter/Faseroptik realisiert werden.3. The coupling of the light to the measurement object can, for. B. can be realized directly or with fiber optics.
  • 4. Detektion des rückgestreuten Lichtes in verschiedenen Abständen, z. B. in 5 mm-Abständen, von Sender-Detektor- Abstand 5 mm bis größer 150 mm, gleichzeitig oder seriell.4. Detection of the backscattered light in different Distances, e.g. B. at 5 mm intervals, from transmitter-detector Distance 5 mm to greater than 150 mm, simultaneously or in series.
  • 5. Die Detektoren können direkt am Meßobjekt angekoppelt sein oder aber das rückgestreute Licht wird ebenfalls mit Glasfasern aufgenommen und zu den Detektoren geleitet. Als Detektoren kommen entsprechende Anordnungen von bekannten, empfindlichen und schnellen Lichtempfängern in Frage. Besonders vorteilhaft sind Arrays von Detektoren, wie sie bei Photodioden, aber auch Avalanche-Photodioden verfügbar sind. Ahnliches gilt für Multianodenphotomultiplier bzw. ortsempfindliche Photomultiplier, die mehrere Detektoren in einer Röhre vereinen. 5. The detectors can be coupled directly to the measurement object or the backscattered light is also included Glass fibers picked up and passed to the detectors. As Corresponding arrays come from known, sensitive and fast light receivers in question. Arrays of detectors such as these are particularly advantageous available for photodiodes, but also avalanche photodiodes are. The same applies to multi-anode photomultipliers or location-sensitive photomultiplier that uses multiple detectors unite a tube.  
  • 6. Zur Unterdrückung des Fremdlichtsignals wird die lock-in- Technik angewandt, d. h. Modulation der Lichtintensität mit bis zu mehreren MHz, wobei die Lichtquellen It bis In mit Modulationsfrequenzen f₁ bis fn betrieben werden.6. To suppress the extraneous light signal, the lock-in technique is used, ie modulation of the light intensity with up to several MHz, the light sources I t to I n being operated with modulation frequencies f 1 to f n .
  • 7. Wenn die rückgestreuten optischen Signale eine kritische Schwelle unterschreiten, z. B. wenn der die Lichtquelle enthaltende Applikator sich vom Meßobjekt gelöst hat, erfolgt eine automatische Sicherheitsabschaltung der Lichtquellen (Laserschutz).7. If the backscattered optical signals are critical Falling below the threshold, e.g. B. if the the light source containing applicator has detached from the test object, there is an automatic safety shutdown of the Light sources (laser protection).
  • 8. Digitalisierung der einzelnen spektralen rückgestreuten Lichtanteile mittels eines ADCs im Multiplex-Verfahren oder mittels mehrerer ADCs gleichzeitig, um im Computer durch geeignete Algorithmen die Signale dann entsprechend auszuwerten.8. Digitization of the individual spectral backscattered Light components by means of an ADC in the multiplex process or by means of several ADCs at the same time to pass through in the computer suitable algorithms then the signals accordingly evaluate.
  • 9. Digitalisierung des Atmungssignals, gemessen z. B. mit einem Atemsensor, mittels ADC, um die optischen Meßsignale auf Atmung von Mann/Frau triggern zu können, d. h. AtmungMann/Frau synchrones Mitteln der optischen Meßsignale.9. Digitization of the respiratory signal, measured z. B. with a breath sensor, by means of ADC, in order to be able to trigger the optical measurement signals for breathing man / woman, ie breathing man / woman synchronous averaging of the optical measurement signals.
  • 10. Digitalisierung des Herzschlagsignals, gemessen z. B. mit EKG oder Puls, mittels ADC, um die optischen Meßsignale auf Herzschlag von Mann/Frau korrelieren zu können.10. Digitization of the heartbeat signal, measured z. B. with EKG or pulse, using ADC to record the optical measurement signals To be able to correlate the heartbeat of a man / woman.
  • 11. Für die Oximetrie am Föten zusätzlich Triggerung der Meßsignale auf kindliches EKG zum PulsKind synchronen Mitteln der Daten.11. For oximetry on the fetus, additional triggering of the measurement signals on a child's ECG to the child's pulse synchronous data averaging.
  • 12. Signalauswertung (1. Ausführung):
    • a) Korrelieren der optischen Signale der verschiedenen Lichtwege bei gleichem Sender-Detektor-Abstand,
    • b) Korrelieren der Daten mit Atmungs-/Herzaktivität,
    • c) Bestimmung der jeweils mittleren optischen Gewebeparameter für die einzelnen Sender-Detektor- Abstände,
    • d) Bestimmung (z. B. aus Ultraschallbildern) der individuellen Geometrie der Patienten oder Mutter wie z. B. Schichtdicken der einzelnen Gewebekomponenten. Mit diesen Daten und der Kenntnis der ungefähren optischen Eigenschaften läßt sich z. B. mit FEM die Lichtausbreitung in oben beschriebener Meßanordnung näherungsweise berechnen. Wenn diese bananenförmige Lichtausbreitungszonen für alle Sender-Detektor- Abstände einmal bekannt sind, können mit den Daten aus
    • (c) und diesem Model die optischen Eigenschaften des Meßobjektes quantitativ für die verschiedenen Tiefenlagen berechnet werden.
    • e) Aus den in (d) bestimmten Absorptionskoeffizienten bei verschiedenen Wellenlängen wird die Oxigenierung für die verschiedenen Gewebeschichten berechnet.
    • f) Aus den bei verschiedenen Sender-Detektor-Abständen gemessenen Signalen wird derjenige Abstand von Sender- Detektor bestimmt, bei dem die fötale Pulsmodulation der Oxigenierung (d. h. ein Oxigenierungssignal, das phasensynchron zum kindlichen Herzschlag ist) gerade sichtbar wird. Die Signale bei kleineren Sender- Detektor-Abständen (als dieser so bestimmte Abstand) werden dann zur Bestimmung der mütterlichen optischen Gewebeeigenschaften und einer entsprechenden Korrektur des Gesamtsignals verwendet, um den fötalen Anteil des Oxigenierungssignals möglichst fehlerfrei bestimmen zu können.
    12. Signal evaluation (1st version):
    • a) correlating the optical signals of the different light paths with the same transmitter-detector distance,
    • b) correlating the data with breathing / heart activity,
    • c) determining the mean optical tissue parameters for the individual transmitter-detector distances,
    • d) Determination (e.g. from ultrasound images) of the individual geometry of the patient or mother, such as e.g. B. layer thicknesses of the individual tissue components. With this data and knowledge of the approximate optical properties, z. B. with FEM approximately calculate the light propagation in the measuring arrangement described above. Once these banana-shaped light propagation zones are known for all transmitter-detector distances, the data can be used
    • (c) and this model the optical properties of the measurement object are calculated quantitatively for the different depth positions.
    • e) The oxygenation for the various tissue layers is calculated from the absorption coefficients at different wavelengths determined in (d).
    • f) From the signals measured at different transmitter-detector distances, the distance from the transmitter-detector is determined at which the fetal pulse modulation of the oxygenation (ie an oxygenation signal that is phase-synchronized with the child's heartbeat) is just becoming visible. The signals at smaller transmitter-detector distances (than this distance determined in this way) are then used to determine the maternal optical tissue properties and a corresponding correction of the overall signal in order to be able to determine the fetal portion of the oxygenation signal as error-free as possible.

Claims (13)

1. Vorrichtung zur nichtinvasiven optischen Erfassung der Sauerstoffversorgung eines Patienten mit einer Laser-Licht­ quelle (5), die einen Lichtstrahl (9) auf das Meßobjekt (10) richtet und einem Detektor (8), der das aus dem Meßobjekt (10) austretende Licht detektiert und einer Verarbeitungs­ schaltung (12, 13) zuführt, bei der die Lichtquelle (5) Licht unterschiedlicher Wellenlängen ausstrahlen kann, bei der der Detektor (8) als Detektorarray mit mindestens drei Einzelde­ tektoren ausgebildet ist und bei der die Signale der Einzel­ detektoren derart verknüpft werden, daß das Sauerstoff-Sätti­ gungssignal des untersuchten Organs von den Störsignalen des darüber liegenden Gewebes getrennt wird.1. Device for non-invasive optical detection of the oxygen supply to a patient with a laser light source ( 5 ), which directs a light beam ( 9 ) onto the test object ( 10 ) and a detector ( 8 ) which exits the test object ( 10 ) Detects light and feeds a processing circuit ( 12 , 13 ) in which the light source ( 5 ) can emit light of different wavelengths, in which the detector ( 8 ) is designed as a detector array with at least three individual detectors and in which the signals of the individual detectors are linked in such a way that the oxygen saturation signal of the examined organ is separated from the interference signals of the tissue above it. 2. Vorrichtung nach Anspruch 1, bei der ein Referenzstrahl (16) auf ein Meßphantom (15) gerichtet wird, dem ein weiterer Detektor (17) zugeordnet ist, wobei die Detektorausgangs­ signale in einer Auswerteeinheit (13) verglichen werden.2. Device according to claim 1, in which a reference beam ( 16 ) is directed onto a measuring phantom ( 15 ), to which a further detector ( 17 ) is assigned, the detector output signals being compared in an evaluation unit ( 13 ). 3. Vorrichtung nach Anspruch 1, bei der das Detektorarray li­ near ausgebildet ist.3. The apparatus of claim 1, wherein the detector array li near is trained. 4. Vorrichtung nach Anspruch 1, bei der mehrere lineare De­ tektorarrays vorgesehen sind.4. The device according to claim 1, wherein a plurality of linear De tector arrays are provided. 5. Vorrichtung nach Anspruch 4, bei der die Detektorarrays im Winkel zueinander angeordnet sind.5. The device according to claim 4, wherein the detector arrays in Angles are arranged to each other. 6. Vorrichtung nach Anspruch 1, bei der die Einzeldetektoren auf einer beliebigen Fläche angeordnet sind.6. The device according to claim 1, wherein the individual detectors are arranged on any surface. 7. Vorrichtung nach einem der Ansprüche 1 bis 6, bei dem die Lichtsignale in der Intensität moduliert sind.7. Device according to one of claims 1 to 6, wherein the Light signals are modulated in intensity. 8. Vorrichtung nach einem der Ansprüche 1 bis 7, bei der die Messungen mit Körperfunktionen synchronisiert sind. 8. Device according to one of claims 1 to 7, wherein the Measurements are synchronized with body functions.   9. Vorrichtung nach einem der Ansprüche 1 bis 8, bei der die Lichtquelle (5) und/oder der Detektor (8) mit anderen Appli­ katoren kombiniert sind.9. Device according to one of claims 1 to 8, in which the light source ( 5 ) and / or the detector ( 8 ) are combined with other applicators. 10. Verfahren zur Signalauswertung bei der Vorrichtung nach einem der Ansprüche 1 bis 9, bei dem für die einzelnen Sen­ der-Detektor-Abstände jeweils die mittleren optischen Gewebe­ parameter und daraus die Oxigenierung bestimmt werden.10. Method for signal evaluation in the device one of claims 1 to 9, in which for the individual Sen the detector distances each the mean optical tissue parameters and from this the oxygenation can be determined. 11. Verfahren nach Anspruch 10, bei dem die optischen Gewebe­ parameter bestimmt werden, indem auf der Basis von anatomi­ schen Schnittbildern der Lichtausbreitungsweg berechnet wird.11. The method of claim 10, wherein the optical tissue parameters can be determined based on anatomi the light propagation path is calculated. 12. Verfahren nach Anspruch 10 zur Bestimmung des Sauer­ stoffstatus eines Fötus, bei dem aus den bei verschiedenen Sender-Detektor-Abständen gemessenen Signalen derjenige Ab­ stand bestimmt wird, bei dem die fötale Pulsmodulation des Oxigenierungssignals gerade sichtbar wird, wobei die Signale bei kleineren Abständen zur Korrektur des Einflusses des müt­ terlichen Gewebes verwendet werden.12. The method according to claim 10 for determining the acid Substance status of a fetus, in which from the at different Transmitter-detector distances measured signals Ab was determined in which the fetal pulse modulation of the Oxygenation signal is just visible, the signals at smaller intervals to correct the influence of the mother terial tissue can be used. 13. Verfahren nach Anspruch 10, bei dem die Signale der ver­ schiedenen Lichtwege bei gleichem Sender-Detektor-Abstand korreliert werden.13. The method according to claim 10, wherein the signals of the ver different light paths with the same transmitter-detector distance be correlated.
DE1996140807 1996-10-02 1996-10-02 Noninvasive optical detection of oxygen supply to e.g. brain or liver Ceased DE19640807A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1996140807 DE19640807A1 (en) 1996-10-02 1996-10-02 Noninvasive optical detection of oxygen supply to e.g. brain or liver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1996140807 DE19640807A1 (en) 1996-10-02 1996-10-02 Noninvasive optical detection of oxygen supply to e.g. brain or liver

Publications (1)

Publication Number Publication Date
DE19640807A1 true DE19640807A1 (en) 1997-09-18

Family

ID=7807772

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1996140807 Ceased DE19640807A1 (en) 1996-10-02 1996-10-02 Noninvasive optical detection of oxygen supply to e.g. brain or liver

Country Status (1)

Country Link
DE (1) DE19640807A1 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028887A1 (en) * 1998-11-18 2000-05-25 Alfons Krug Device for non-invasively detecting the oxygen metabolism in tissues
DE10222372A1 (en) * 2002-05-15 2003-12-04 Univ Dresden Tech Sensor for determination of optical properties of tissue has transmitters which irradiate tissue, radiation scattered by tissue being detected by photoreceptors and signals sent to host for evaluation
DE10311408B3 (en) * 2003-03-13 2004-09-02 Universität Zu Lübeck Non-invasive measurement of blood component concentrations, e.g. for monitoring patients in an emergency, comprises using light with a pulsed ultrasonic beam to detect backscattered light for evaluation
US7647084B2 (en) 2005-08-08 2010-01-12 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7650177B2 (en) 2005-09-29 2010-01-19 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7657296B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Unitary medical sensor assembly and technique for using the same
US7676253B2 (en) 2005-09-29 2010-03-09 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US7720516B2 (en) 1996-10-10 2010-05-18 Nellcor Puritan Bennett Llc Motion compatible sensor for non-invasive optical blood analysis
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US7725147B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for removing artifacts from waveforms
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US7890154B2 (en) 2004-03-08 2011-02-15 Nellcor Puritan Bennett Llc Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US7890153B2 (en) 2006-09-28 2011-02-15 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
DE102004011631B4 (en) * 2004-03-10 2011-03-24 Ott, Lutz, Dipl.-Ing. Method and device for the deep-selective detection of spontaneous activities and general muscle activities
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8095192B2 (en) 2003-01-10 2012-01-10 Nellcor Puritan Bennett Llc Signal quality metrics design for qualifying data for a physiological monitor
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8190225B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8204567B2 (en) 2007-12-13 2012-06-19 Nellcor Puritan Bennett Llc Signal demodulation
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8238994B2 (en) 2005-10-28 2012-08-07 Nellcor Puritan Bennett Llc Adjusting parameters used in pulse oximetry analysis
US8260391B2 (en) 2005-09-12 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8352009B2 (en) 2005-09-30 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8366613B2 (en) 2007-12-26 2013-02-05 Covidien Lp LED drive circuit for pulse oximetry and method for using same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8386000B2 (en) 2008-09-30 2013-02-26 Covidien Lp System and method for photon density wave pulse oximetry and pulse hemometry
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8401608B2 (en) 2009-09-30 2013-03-19 Covidien Lp Method of analyzing photon density waves in a medical monitor
US8423109B2 (en) 2005-03-03 2013-04-16 Covidien Lp Method for enhancing pulse oximery calculations in the presence of correlated artifacts
US8433382B2 (en) 2008-09-30 2013-04-30 Covidien Lp Transmission mode photon density wave system and method
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8494786B2 (en) 2009-07-30 2013-07-23 Covidien Lp Exponential sampling of red and infrared signals
US8494604B2 (en) 2009-09-21 2013-07-23 Covidien Lp Wavelength-division multiplexing in a multi-wavelength photon density wave system
US8532751B2 (en) 2008-09-30 2013-09-10 Covidien Lp Laser self-mixing sensors for biological sensing
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US8750953B2 (en) 2008-02-19 2014-06-10 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US8788001B2 (en) 2009-09-21 2014-07-22 Covidien Lp Time-division multiplexing in a multi-wavelength photon density wave system
US8798704B2 (en) 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
US8914088B2 (en) 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
US8983800B2 (en) 2003-01-13 2015-03-17 Covidien Lp Selection of preset filter parameters based on signal quality
DE102015217422A1 (en) * 2015-09-11 2017-03-16 Robert Bosch Gmbh A method for outputting a positioning signal for positioning a signal generator of a measuring device on a skin surface, control device and measuring device
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374844A1 (en) * 1988-12-19 1990-06-27 Otsuka Electronics Co., Ltd. Method and apparatus for measuring the inside information of substance with the use of light scattering
DE4209886A1 (en) * 1991-03-27 1992-10-01 Otsuka Denshi Kk ABSORPTION SPECTRUM CORRECTION AND SPECTROMETER WORKING WITH IT
DE4130369A1 (en) * 1991-09-12 1993-03-25 Siemens Ag Medical imaging device for measuring blood and tissue changes - measures transmission or reflection of laser source in red to infrared region, with deflector producing fan-shaped beam, and position-resolving two-dimensional sensor
EP0549835A1 (en) * 1991-12-30 1993-07-07 Hamamatsu Photonics K.K. Diagnostic apparatus
DE4417639A1 (en) * 1994-05-19 1995-11-23 Boehringer Mannheim Gmbh Analysis of concns. of substances in a biological sample
US5524617A (en) * 1995-03-14 1996-06-11 Nellcor, Incorporated Isolated layer pulse oximetry
DE4445683A1 (en) * 1994-12-21 1996-06-27 Boehringer Mannheim Gmbh Method for examining a scattering medium with intensity-modulated light
US5553616A (en) * 1993-11-30 1996-09-10 Florida Institute Of Technology Determination of concentrations of biological substances using raman spectroscopy and artificial neural network discriminator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374844A1 (en) * 1988-12-19 1990-06-27 Otsuka Electronics Co., Ltd. Method and apparatus for measuring the inside information of substance with the use of light scattering
DE4209886A1 (en) * 1991-03-27 1992-10-01 Otsuka Denshi Kk ABSORPTION SPECTRUM CORRECTION AND SPECTROMETER WORKING WITH IT
DE4130369A1 (en) * 1991-09-12 1993-03-25 Siemens Ag Medical imaging device for measuring blood and tissue changes - measures transmission or reflection of laser source in red to infrared region, with deflector producing fan-shaped beam, and position-resolving two-dimensional sensor
EP0549835A1 (en) * 1991-12-30 1993-07-07 Hamamatsu Photonics K.K. Diagnostic apparatus
US5553616A (en) * 1993-11-30 1996-09-10 Florida Institute Of Technology Determination of concentrations of biological substances using raman spectroscopy and artificial neural network discriminator
DE4417639A1 (en) * 1994-05-19 1995-11-23 Boehringer Mannheim Gmbh Analysis of concns. of substances in a biological sample
DE4445683A1 (en) * 1994-12-21 1996-06-27 Boehringer Mannheim Gmbh Method for examining a scattering medium with intensity-modulated light
US5524617A (en) * 1995-03-14 1996-06-11 Nellcor, Incorporated Isolated layer pulse oximetry

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7720516B2 (en) 1996-10-10 2010-05-18 Nellcor Puritan Bennett Llc Motion compatible sensor for non-invasive optical blood analysis
WO2000028887A1 (en) * 1998-11-18 2000-05-25 Alfons Krug Device for non-invasively detecting the oxygen metabolism in tissues
US6859658B1 (en) 1998-11-18 2005-02-22 Lea Medizintechnik Gmbh Device for non-invasively detecting the oxygen metabolism in tissues
DE10222372A1 (en) * 2002-05-15 2003-12-04 Univ Dresden Tech Sensor for determination of optical properties of tissue has transmitters which irradiate tissue, radiation scattered by tissue being detected by photoreceptors and signals sent to host for evaluation
US8095192B2 (en) 2003-01-10 2012-01-10 Nellcor Puritan Bennett Llc Signal quality metrics design for qualifying data for a physiological monitor
US8983800B2 (en) 2003-01-13 2015-03-17 Covidien Lp Selection of preset filter parameters based on signal quality
US7251518B2 (en) 2003-03-13 2007-07-31 Nirlus Engineering Ag Blood optode
DE10311408B3 (en) * 2003-03-13 2004-09-02 Universität Zu Lübeck Non-invasive measurement of blood component concentrations, e.g. for monitoring patients in an emergency, comprises using light with a pulsed ultrasonic beam to detect backscattered light for evaluation
US7890154B2 (en) 2004-03-08 2011-02-15 Nellcor Puritan Bennett Llc Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8560036B2 (en) 2004-03-08 2013-10-15 Covidien Lp Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
DE102004011631B4 (en) * 2004-03-10 2011-03-24 Ott, Lutz, Dipl.-Ing. Method and device for the deep-selective detection of spontaneous activities and general muscle activities
US8204577B2 (en) 2004-03-10 2012-06-19 Lutz Ott Process and device for deep-selective detection of spontaneous activities and general muscle activites
US8818475B2 (en) 2005-03-03 2014-08-26 Covidien Lp Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US9351674B2 (en) 2005-03-03 2016-05-31 Covidien Lp Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US8423109B2 (en) 2005-03-03 2013-04-16 Covidien Lp Method for enhancing pulse oximery calculations in the presence of correlated artifacts
US7738937B2 (en) 2005-08-08 2010-06-15 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7693559B2 (en) 2005-08-08 2010-04-06 Nellcor Puritan Bennett Llc Medical sensor having a deformable region and technique for using the same
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US7684843B2 (en) 2005-08-08 2010-03-23 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US7657296B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Unitary medical sensor assembly and technique for using the same
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7647084B2 (en) 2005-08-08 2010-01-12 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8260391B2 (en) 2005-09-12 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US7869850B2 (en) 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US7725147B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for removing artifacts from waveforms
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8744543B2 (en) 2005-09-29 2014-06-03 Covidien Lp System and method for removing artifacts from waveforms
US8060171B2 (en) 2005-09-29 2011-11-15 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US7650177B2 (en) 2005-09-29 2010-01-19 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US7676253B2 (en) 2005-09-29 2010-03-09 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8965473B2 (en) 2005-09-29 2015-02-24 Covidien Lp Medical sensor for reducing motion artifacts and technique for using the same
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US7729736B2 (en) 2005-09-29 2010-06-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8600469B2 (en) 2005-09-29 2013-12-03 Covidien Lp Medical sensor and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8352009B2 (en) 2005-09-30 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8238994B2 (en) 2005-10-28 2012-08-07 Nellcor Puritan Bennett Llc Adjusting parameters used in pulse oximetry analysis
US8437826B2 (en) 2006-05-02 2013-05-07 Covidien Lp Clip-style medical sensor and technique for using the same
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8577436B2 (en) 2006-08-22 2013-11-05 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8190224B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8190225B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8195264B2 (en) 2006-09-22 2012-06-05 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US8660626B2 (en) 2006-09-28 2014-02-25 Covidien Lp System and method for mitigating interference in pulse oximetry
US7890153B2 (en) 2006-09-28 2011-02-15 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8204567B2 (en) 2007-12-13 2012-06-19 Nellcor Puritan Bennett Llc Signal demodulation
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8366613B2 (en) 2007-12-26 2013-02-05 Covidien Lp LED drive circuit for pulse oximetry and method for using same
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8750953B2 (en) 2008-02-19 2014-06-10 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US10076276B2 (en) 2008-02-19 2018-09-18 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US11298076B2 (en) 2008-02-19 2022-04-12 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US8532751B2 (en) 2008-09-30 2013-09-10 Covidien Lp Laser self-mixing sensors for biological sensing
US8386000B2 (en) 2008-09-30 2013-02-26 Covidien Lp System and method for photon density wave pulse oximetry and pulse hemometry
US8433382B2 (en) 2008-09-30 2013-04-30 Covidien Lp Transmission mode photon density wave system and method
US8914088B2 (en) 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US8494786B2 (en) 2009-07-30 2013-07-23 Covidien Lp Exponential sampling of red and infrared signals
US9380969B2 (en) 2009-07-30 2016-07-05 Covidien Lp Systems and methods for varying a sampling rate of a signal
US8494604B2 (en) 2009-09-21 2013-07-23 Covidien Lp Wavelength-division multiplexing in a multi-wavelength photon density wave system
US8788001B2 (en) 2009-09-21 2014-07-22 Covidien Lp Time-division multiplexing in a multi-wavelength photon density wave system
US8798704B2 (en) 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8401608B2 (en) 2009-09-30 2013-03-19 Covidien Lp Method of analyzing photon density waves in a medical monitor
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
DE102015217422A1 (en) * 2015-09-11 2017-03-16 Robert Bosch Gmbh A method for outputting a positioning signal for positioning a signal generator of a measuring device on a skin surface, control device and measuring device

Similar Documents

Publication Publication Date Title
DE19640807A1 (en) Noninvasive optical detection of oxygen supply to e.g. brain or liver
DE69533927T2 (en) For low saturation, specially optimized pulse oximeter sensors
EP0892617B1 (en) Detection of parasitic signals during pulsoxymetric measurement
DE69918401T2 (en) Apparatus and method for measuring living body information and body fat and program recording media
DE19506484C2 (en) Method and device for selective non-invasive laser myography (LMG)
DE10213692B4 (en) Method for controlling a device and device for measuring ingredients in the blood
DE19651690C2 (en) Measuring method for determining blood oxygen saturation
DE10311408B3 (en) Non-invasive measurement of blood component concentrations, e.g. for monitoring patients in an emergency, comprises using light with a pulsed ultrasonic beam to detect backscattered light for evaluation
DE19612425C2 (en) Apparatus for measuring hemoglobin concentration
DE102004005086B4 (en) Apparatus for measuring the concentration of a light-absorbing substance in blood
DE60023162T2 (en) STETHOSCOPE
DE60301868T2 (en) Blood glucose meter
DE69333456T2 (en) SYSTEM METHOD FOR NON-INVASIVE MONITORING OF HEMATOCRIT VALUE
EP2403398B1 (en) Diagnostic measuring device
DE19840452A1 (en) Method and device for the non-invasive measurement of concentrations of blood components
DE4330460C2 (en) Device for examining tissue with light of different wavelengths
EP0430340A2 (en) Non-invasive oximeter apparatus
DE102005034219A1 (en) Method for in vivo tissue classification
DE602004001794T2 (en) Method and device for in vitro or in vivo measurement of the concentration of a substance
EP3170446A1 (en) Method and device for the non-invasive optical in-vivo determination of glucose concentration in flowing blood
DE102016218060A1 (en) ON A WRIST-DRIVEN DEVICE FOR DETECTING A BIOSIGNAL
DE4339067A1 (en) Method and arrangement for the non-invasive, transcutaneous determination of substance concentrations in body fluid or human tissue
DE19629342C2 (en) Method and arrangement for the non-invasive, transcutaneous determination of substance concentrations in body tissues
DE102014107250A1 (en) Method and apparatus for noninvasive in vivo optical determination of glucose concentration in flowing blood
DD283218A5 (en) METHOD AND DEVICE FOR NONINVASIVELY DETERMINING THE OXIDATIVE METABOLIC CONDITION OF A CHILD BEFORE AND DURING THE BIRTH

Legal Events

Date Code Title Description
OAV Applicant agreed to the publication of the unexamined application as to paragraph 31 lit. 2 z1
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection