CN103140780B - 具有非球形弯月壁的液体弯月形透镜 - Google Patents

具有非球形弯月壁的液体弯月形透镜 Download PDF

Info

Publication number
CN103140780B
CN103140780B CN201180046963.XA CN201180046963A CN103140780B CN 103140780 B CN103140780 B CN 103140780B CN 201180046963 A CN201180046963 A CN 201180046963A CN 103140780 B CN103140780 B CN 103140780B
Authority
CN
China
Prior art keywords
lens
saline solution
optical lenses
lenses according
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180046963.XA
Other languages
English (en)
Other versions
CN103140780A (zh
Inventor
R.B.普格
D.B.奥特斯
A.托纳
E.R.科尼克
J.D.里亚尔
S.斯努克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Vision Care Inc
Original Assignee
Johnson and Johnson Vision Care Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson Vision Care Inc filed Critical Johnson and Johnson Vision Care Inc
Publication of CN103140780A publication Critical patent/CN103140780A/zh
Application granted granted Critical
Publication of CN103140780B publication Critical patent/CN103140780B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1624Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside
    • A61F2/1627Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside for changing index of refraction, e.g. by external means or by tilting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1624Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside
    • A61F2/1635Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside for changing shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/06Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of fluids in transparent cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C3/00Special supporting arrangements for lens assemblies or monocles
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/049Contact lenses having special fitting or structural features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • G02C7/085Fluid-filled lenses, e.g. electro-wetting lenses

Abstract

本发明一般涉及具有弯月壁的弓形液体弯月形透镜。某些特定实施例包括具有弯月壁的液体弯月形透镜,弯月壁为基本上锥形截头的形状,其横截面为非球形的。实施例还可包括具有适于包含在接触镜片中的大小和形状的透镜。

Description

具有非球形弯月壁的液体弯月形透镜
相关专利申请
本专利申请要求2010年9月29日提交的名称为“LIQUID MENISCUSLENS WITH NON-SPHERICAL MENISCUS WALL”的序列号为No.61/387510的美国临时专利申请的优先权,并且作为2011年4月27日提交的名称为“ARCUATE LIQUID MENISCUS LENS”的序列号为No.13/095786的美国非临时专利申请的部分连续专利申请,以及作为2011年5月31日提交的名称为“LENS WITH CONICAL FRUSTUM MENISCUSWALL”的序列号为No.13/149105的美国非临时专利申请的部分连续专利申请,所述专利申请中的每个的内容均为可靠的并以引用方式并入。
技术领域
本发明整体涉及液体弯月形透镜,更具体地讲,其包括具有弯月壁的液体弯月形透镜,其横截面为非球形并且还可以是弓形的。
背景技术
液体弯月形透镜已为各行业中所熟知。如下文结合图1A和图1B更全面地讨论的,已知液体弯月形透镜被设计成圆柱形状,其具有由与为直线的轴相距固定距离的点形成的周边表面。已知液体弯月形透镜的设计被限定为具有大致平行于第二内表面的第一内表面并且每个均垂直于柱轴。液体弯月形透镜用途的已知例子包括例如电子相机的装置。
传统上,眼科装置(例如接触镜片和眼内透镜)包括生物相容性装置,其具有矫正性质、美容性质或治疗的性质。例如接触镜片可提供以下一种或多种功能:视力矫正功能、增进美容以及治疗效果。每种功能由透镜的物理特性提供。将折射性质结合到透镜中的设计可提供视力矫正功能。结合到透镜中的颜料可提供美容增强作用。结合到透镜中的活性剂可提供治疗功能性。
最近,已将电子元件结合到接触镜片中。一些元件可包括半导体装置。然而,包括液体弯月形透镜的尺寸、形状和控制方面的物理限制使其难以应用于眼科镜片中。一般来讲,液体弯月形透镜的圆柱形状(有时也称为“冰球”形状)不利于可用于人眼环境中的物品。
此外,曲面液体弯月形透镜包括的物理挑战不一定存在于具有平行侧壁和/或光学窗口的液体弯月形透镜的传统设计中。
发明内容
因此,本发明提供了包括弓形前曲面透镜和弓形后曲面透镜的液体弯月形透镜。本发明包括横截面为非球形的弯月壁,其具有的物理结构有利于以下中的一者或二者:包含在透镜内的液体的吸引和排斥以及与另一种液体形成弯月面。
根据本发明,第一弓形光学件紧邻第二弓形光学件,在两者之间形成有腔体。所述腔体内保持有盐溶液和油。向大致位于所述第一弓形光学件和所述第二弓形光学件中的一者或二者的周边区域中的弯月壁施加静电电势,改变了形成于包含在所述腔体内的盐溶液和油之间的弯月面的物理形状。
附图说明
图1A示出了处于第一状态的圆柱形液体弯月形透镜的现有技术例子。
图1B示出了处于第二状态的圆柱形液体弯月形透镜的现有技术例子。
图2示出了根据本发明的一些实施例的示例性液体弯月形透镜的切面剖面轮廓。
图3示出了根据本发明的一些实施例的示例性弓形液体弯月形透镜的一部分的横截面。
图4示出了弓形液体弯月形透镜的附加示例性方面。
图5示出了根据本发明的一些实施例的弓形液体弯月形透镜内的弯月壁元件。
图6示出了弓形液体弯月形透镜中的非球形弯月壁的俯视截面图。
图7示出了弓形液体弯月形透镜中的非球形弯月壁的俯视正交视图,其示出了液体弯月面的位置。
具体实施方式
本发明提供了一种液体弯月形透镜,其具有限定所述液体弯月形透镜的弯月腔体的前曲面透镜和后曲面透镜中的至少之一。
术语
在涉及本发明的该说明书和权利要求中,所使用的各个术语定义如下:
接触角:油/盐溶液界面(也称为液体弯月边界)接触弯月壁的角度。就线性弯月壁而言,接触角为在液体弯月边界与弯月壁接触的点处,在弯月壁和相切于液体弯月边界的线之间测量的角度。就曲面弯月壁而言,接触角为在相切于弯月壁的线与液体弯月边界接触的点处,在两者之间测量的角度。
透镜:如本文所用,透镜是指具有前表面和后表面的制品,其在光学上能够传输预定范围波长的辐射,例如可见光。透镜可包括基本上平坦的前表面和后表面中的一者或两者,或可包括弓形形状的前表面和后表面中的一者或两者。
液体弯月边界:盐溶液和油之间的弓形表面界面。一般来讲,该表面将形成在一侧上为凹面而在另一侧上为凸面的透镜。
弯月腔体:位于弓形液体弯月形透镜内、介于前曲面透镜和后曲面透镜之间的空间,其中包含有油和盐溶液。
弯月壁:前曲面透镜内部上的特定区域,使得其位于弯月腔体内,而液体弯月边界沿弯月腔体运动。
光学区:如本文所用,是指眼科镜片佩戴者可以透过其观看的眼科镜片区域。
锐缘:前曲面透镜片或后曲面透镜片任一者的内表面的几何结构,其足以包含光学件上两种预定流体的接触线的位置。锐缘通常为外角而非内角。从流体的角度来看,其为大于180度的角度。
现在参见图1A,其为描述了现有技术透镜100的剖视图,其中油101和盐溶液102包含在圆柱体110内。圆柱体110包括两个光学材料板106。每块板106包括基本上平坦的内表面113-114。圆柱体110包括基本上旋转对称的内表面。在一些现有技术实施例中,一个或多个表面可包括疏水性涂层。电极105也被包括在该圆柱体的周边上或围绕该圆柱体的周边。在紧邻电极105处也可使用电绝缘体。
根据现有技术,内表面113-114中的每一个为基本上平坦的或平面的。在盐溶液102A和油101之间限定界面表面112A。如图1A所示,界面112A的形状与盐溶液102A和油101的折射率性质结合,以接收穿过第一内表面113的入射光108并提供穿过第二内表面114的发散光109。介于油101与盐溶液102之间的界面表面的形状可因向电极105施加电势而改变。
图1A示出了在100处所示的现有技术透镜的透视图。
现在参见图1B,其示出了处于增能状态的现有技术透镜100。增能状态是通过横跨电极115施加电压114而完成的。介于油101与盐溶液102B之间的界面表面112B的形状因向电极115施加电势而改变。如图1B中所示,穿过油101和盐溶液102B的入射光108B聚焦为会聚光图案111。
现在参见图2,其为具有前曲面透镜201和后曲面透镜202的液体弯月形透镜200的剖视图。在多个实施例中,前曲面透镜201与后曲面透镜202可包括弓形透镜或基本上平坦的透镜。在一些优选的实施例中,前曲面透镜201和后曲面透镜202紧邻彼此定位并且在两者之间形成腔体210。前曲面透镜201包括凹面弓形内透镜表面203和凸面弓形外透镜表面204。凹面弓形内透镜表面203可具有一个或多个涂层(图2中未示出)。涂层可包含例如导电材料或电绝缘材料、疏水性材料或亲水性材料中的一种或多种。凹面弓形内透镜表面203和涂层中的一者或两者与包含在腔体210内的油208液体连通和光学连通。
后曲面透镜202包括凸面弓形内透镜表面205和凹面弓形外透镜表面206。凸面弓形内透镜表面205可具有一个或多个涂层(图2中未示出)。涂层可包含例如导电材料或电绝缘材料、疏水性材料或亲水性材料中的一种或多种。凸面弓形内透镜表面205和涂层中的至少之一与包含在腔体210中的盐溶液207液体连通和光学连通。盐溶液207包含离子导电的一种或多种盐或其它组分,并同样地可受电荷吸引或排斥。
根据本发明,导电涂层209沿着前曲面透镜201和后曲面透镜202中的一者或两者的周边的至少一部分定位。导电涂层209可包含金或银并且优选地为生物相容性的。向导电涂层209施加电势使得盐溶液207中的离子导电的盐或其它组分受到吸引或排斥。
前曲面透镜201具有与穿过凹面弓形内透镜表面203和凸面弓形外透镜表面204的光相关的光焦度。该光焦度可为0,或可为正焦度或负焦度。在一些优选的实施例中,光焦度为通常存在于矫正性接触镜片中的焦度,例如作为非限制性例子介于-8.0和+8.0屈光度之间的焦度。
后曲面透镜202具有与穿过凸面弓形内透镜表面205和凹面弓形外透镜表面206的光相关的光焦度。该光焦度可为0,或可为正焦度或负焦度。在一些实施例中,光焦度为通常存在于矫正性接触镜片中的焦度,例如作为非限制性例子介于-8.0和+8.0屈光度之间的焦度。光轴212穿过后曲面透镜202和前曲面透镜201形成。
多个实施例还可包括与形成于盐溶液207和油208之间的液体弯月面211的形状变化相关联的光焦度变化。在一些实施例中,光焦度变化可相对较小,例如介于0至2.0屈光度变化之间的变化。在其它实施例中,与液体弯月面的形状变化相关联的光焦度变化可为至多约30或更高的屈光度变化。一般来讲,与液体弯月面211的形状变化相关联的更大的光焦度变化与相对增加的透镜厚度213相关联。
根据本发明的一些实施例,例如可包括在例如接触镜片的眼科镜片中的那些实施例,弓形液体弯月形透镜200的横切透镜厚度213将为至多约1,000微米厚。相对较薄的透镜200的示例性透镜厚度213可为至多约200微米厚。优选的实施例可包括具有约600微米厚的透镜厚度213的液体弯月形透镜200。一般来讲,前曲面透镜201的横切厚度可介于约35微米至约200微米之间,并且后曲面透镜202的横切厚度也可介于约35微米和200微米之间。通常,横截面轮廓包括透镜200中不同位置处厚度的限定差异。
根据本发明,累计光焦度为前曲面透镜201、后曲面透镜202、以及在油208和盐溶液207之间形成的液体弯月面211的光焦度的总和。在一些实施例中,透镜200的光焦度还包括前曲面透镜201、后曲面透镜202、油208和盐溶液207中的一种或多种之间的折射率差。
在包括结合到接触镜片中的弓形液体弯月形透镜200的那些实施例中,还期望的是,当接触镜片配戴者运动时,盐水207与油208在弓形液体弯月形透镜200内的相对位置保持稳定。一般来讲,优选的是在佩戴者运动时阻止油208相对于盐溶液207流动和运动。因此,油208和盐溶液207的组合优选地被选择成具有相同的或类似的密度。油208和盐溶液207还优选地具有相对较低的混溶性,以使得盐溶液207与油208不混合。
在一些优选的实施例中,包含在腔体210内的一定体积的盐溶液207比包含在腔体210内的一定体积的油208多。一些优选的实施例还包括基本上与后曲面透镜202的整个内表面205接触的盐溶液207。一些实施例可包括一定体积的油208,所述一定体积的油相比于一定量的盐溶液207为约66体积%或更多。一些附加的实施例可包括弓形液体弯月形透镜,其中一定体积的油208相比于一定量的盐溶液207为约90体积%或更少。
现在参见图3,其示出了弓形液体弯月形透镜300的边缘部分的剖面图。如上所述,弓形液体弯月形透镜300包括组合的前曲面透镜301和后曲面透镜302元件。前曲面透镜301和后曲面透镜302可用一种或多种至少部分地透明的材料形成。在一些实施例中,前曲面透镜301和后曲面透镜302中的一者或两者包括通常为光学透明的塑料,例如,下列中的一种或多种:PMMA、Zeonor和TPX。
前曲面透镜301和后曲面透镜302中的一者或两者可例如通过诸如以下中的一者或多者的工艺制成:单点金刚石车削车床加工、注塑和数字微镜器件自由成型。
前曲面透镜301和后曲面透镜302中的一者或两者可包括导电涂层303,如图所示,该导电涂层303沿着周边部分从309延伸至310。在一些优选的实施例中,导电涂层303包含金。可通过溅镀方法、气相沉积或其它已知的方法来涂覆金。作为非限制性例子,可供选择的导电涂层303可包含铝、镍和铟锡氧化物。一般来讲,导电涂层303将被涂覆到前曲面透镜301和后曲面透镜302中的一者或两者的周边区域。
在本发明的一些实施例中,后曲面透镜302具有涂覆到特定区域的导电涂层304。例如,可从第一边界304-1至第二边界304-2涂覆围绕后曲面透镜302的周边的部分。例如,可通过溅镀方法或气相沉积来涂覆金涂层。在一些实施例中,可使用掩模以预定图案围绕前曲面透镜301或后曲面透镜302的一个或多个周边部分来涂覆金或其它导电材料。可使用多种方法涂覆可供选择的导电材料,并且使所述导电材料覆盖后曲面透镜302的不同区域。
在一些实施例中,可通过导电填充材料例如导电环氧树脂来填充导电流通路径,例如后曲面透镜302中的一个或多个孔或狭缝。导电填料可向前曲面透镜301和后曲面透镜302中的一者或两者的内表面上的导电涂层提供电连通。
在本发明的另一方面,前曲面透镜301和后曲面透镜302中的一者或两者可由多种不同的材料制成,其中通常位于前曲面透镜301和后曲面透镜302的中心区域中的光学区(未示出)可包含光学透明材料,并且周边区域可包括含有导电材料的光学不透明区域。该光学不透明区域还可包括控制电路和能源中的一种或多种。
在另一个方面,在一些实施例中,绝缘体涂层305被涂覆到前曲面透镜301。作为非限制性例子,可将绝缘体涂层305涂覆在从第一区域305-1并且延伸至第二区域305-2的某个区域。绝缘体可包括例如Parylene CTM、Teflon AF或其它具有多种电特性和机械特性以及电阻的材料。
在一些具体的实施例中,绝缘体涂层305产生边界区域,以保持导电涂层303和盐溶液306之间的分离,所述盐溶液包含在前曲面透镜301和后曲面透镜302之间的腔体中。因此,一些实施例包括绝缘体涂层305,其被图案化并被定位在前曲面透镜301和后曲面透镜302中的一者或两者的一个或多个区域中,以防止带正电的导体303与带负电的盐溶液306接触,其中导体303与盐溶液306的接触将导致电路短路。实施例可包括带正电的盐溶液306和带负电的导体303。
其它实施例可允许在导体303和盐溶液306之间发生短路,作为与透镜300的操作相关联的电路的复位功能。例如,短路状态可均衡施加到透镜的电势,并且致使盐溶液306和油307回到默认位置。
一些优选的实施例包括导体303,其从腔体311的内部上的区域309延伸至腔体311外部的区域310。其它实施例可包括穿过前曲面透镜或后曲面透镜的通道312,其可填充有导电材料313,例如防水导电环氧树脂。导电材料313可形成或被连接到腔体外部的电端子。可向该端子施加电势并且通过通道312中的导电材料313传导至涂层。
绝缘体涂层305的厚度可作为透镜性能的参数而变化。根据本发明,带电组分,包括盐溶液306和导体303,通常被保持在绝缘体涂层305的任一侧上。本发明提供了绝缘体涂层305的厚度与介于盐溶液306和导体303之间的电场之间的间接关系,其中盐溶液306和导体303保持的分离越远,则其电场就将越弱。
一般来讲,本发明提出,电场强度可随着绝缘体涂层305的厚度增加而明显降低。电场越接近,则通常将能够得到越多的能量以使球形液体弯月边界308运动。当盐溶液306与导体303之间的距离增大时,盐溶液306与导体涂层303的静电荷相隔就越远,因此就越难以使球面液体弯月边界308运动。反之,绝缘体涂层305越薄,透镜就越容易受到绝缘体涂层305中的缺陷的影响。一般来讲,绝缘体涂层305中甚至相对小的孔也将产生电路短路,并且透镜将不以电润湿方式起作用。
在一些实施例中,希望的是包括密度与也包含在透镜300内的油307的密度大致相同的盐溶液306。例如,盐溶液306的密度可优选地在油307的密度的10%内,并且更优选地盐溶液306的密度在油的密度的5%内,并且最优选地在约1%内或更少。在一些实施例中,可通过调节盐溶液306内的盐或其它组分的浓度来调节盐溶液306的密度。
根据本发明,通过限制相对于前曲面透镜301和后曲面透镜302的油307的运动,弓形液体弯月形透镜300将提供更稳定的光学性质。使油307相对于弓形前曲面透镜301和后曲面透镜302中的一者或两者的运动保持稳定的一种方法是使油307和盐溶液306保持相对一致的密度。此外,与传统的圆柱形透镜设计相比,由于前曲面透镜301和后曲面透镜302两者的内表面的曲面设计,使得盐溶液306层的相对深度或厚度有所减小。在这种情形下,作用在腔体内的流体上的界面力可在维持未扰动的液体弯月边界308方面具有相对较大的贡献。因此,在这种情况下,密度匹配要求可变得更加宽松。在一些实施例中,流体层的相对厚度还支撑液体透镜边界308。
在一些优选的实施例中,与提供相对较高折射率的油307相比,盐溶液306提供较低的折射率。然而,在一些实施例中,可能包括与油307相比折射率较高的盐溶液306,在这种情况下油提供相对较低的折射率。
可以用粘合剂314使前曲面透镜301与后曲面透镜302紧邻彼此固定就位,从而保持其间的油307和盐溶液306。粘合剂314用作密封件,使得盐溶液306或油307不会从曲面液体弯月形透镜300中渗漏。
现在参见图4,示出了曲面液体弯月形透镜400,其中在盐溶液406与油407之间具有液体弯月边界401。根据一些优选的实施例,在402和403之间延伸的弓形壁中的第一角度转折将弯月壁405限定在前曲面透镜404中。当沿着一个或多个导电涂层或导电材料408施加和移除电势时,液体弯月边界401将沿着弯月壁405上下运动。
在一些优选的实施例中,导电涂层408将从保持盐溶液406和油407的腔体409内部的区域延伸至包含盐溶液406和油407的腔体409外部的区域。在此类实施例中,导电涂层408可为施加到腔体409外部某点处的导电涂层408至腔体409内且与盐溶液406接触的导电涂层408的区域的电势的管道。
现在参见图5,其示出了弓形液体弯月形透镜500的边缘部分的剖视图,该透镜具有前曲面透镜501和后曲面透镜502。弓形液体弯月形透镜500可包含盐溶液503和油504。弓形液体弯月形透镜500的几何形状以及盐溶液503和油504的特性有利于在盐溶液503和油504之间形成液体弯月边界505。
一般来讲,可将液体弯月形透镜视为具有下列中的一种或多种的电容器:导电涂层、绝缘体涂层、通路以及存在于前曲面透镜501和后曲面透镜502上或其中的材料。根据本发明,响应于向前曲面透镜501和后曲面透镜502中的一者或两者的至少一部分的表面施加的电势,液体弯月边界505的形状并且因此液体弯月边界505与前曲面透镜501之间的接触角发生变化。
根据本发明,通过导电涂层或材料施加于盐溶液503的电势的变化会改变液体弯月边界505沿弯月壁506的位置。该运动发生在第一锐缘506-1和第二锐缘506-2之间。
在优选的实施例中,当将第一量级的电势(例如,与未通电状态或休眠状态相关的电压和电流)施加到透镜时,液体弯月边界505将位于或临近第一锐缘506-1。
施加第二量级的电势(有时称为第一通电状态),可与液体弯月边界505沿弯月壁506大致向第二锐缘506-2方向的运动相关联,从而使液体弯月边界的形状发生变化。
用于第一通电状态与第二通电状态之间的转换而施加的电压可包括例如在约5伏特到约60伏特之间的直流电压。在其它实施例中,也可使用交流电压。
在一些实施例中,弯月壁506将为与绝缘体涂层的厚度相关的平滑表面。平滑弯月壁506表面可最小化绝缘体涂层中的缺陷。因为当透镜通电或断电时表面纹理的随机不规则性还可导致不稳定的流体运动,并且因此致使不稳定的或无法预测的弯月面运动,所以平滑弯月壁506是优选的。在一些优选的实施例中,平滑弯月壁包括沿着弯月壁506的在约1.25纳米至5.00纳米范围内的峰谷测量。
在另一个方面,在一些实施例中,期望弯月壁506为疏水性的,在这种情况下,所限定的纹理例如纳米纹理化表面可被结合到弓形液体弯月形透镜的设计中。
在另一个方面,在一些实施例中,弯月壁506可相对于透镜的光轴成角度。该角度的范围可为0°(或平行于光轴)至90°或接近90°(或垂直于光轴)。如图所示,并且在一些优选的实施例中,弯月壁506角度通常介于约30°和50°之间,以便使弓形液体弯月形透镜根据当前介于液体弯月边界505和涂覆有绝缘体的弯月壁506之间的接触角来发挥作用。因使用不同材料或因不同光学目的,例如远望视觉,弯月壁506的角度可更接近0°或90°。
根据本发明,弯月壁506的角度可被设计成适应在施加规定电压时沿弯月壁506的运动的量级。在一些实施例中,随着弯月壁506角度的增加,改变透镜焦度的能力通常在给定透镜大小和电压参数内降低。如果弯月壁506相对于光轴为0°或接近0°,则液体弯月边界505还将几乎直线前进至前光学件上。弯月壁角度是可被调整以提供各种透镜性能结果的多个参数之一。
在一些优选的实施例中,弯月壁506的长度为大约0.265mm。然而,在各种设计中,弯月壁506的角度与整个透镜的大小一起将自然地影响弯月壁506的长度。
一般认为,如果油504接触后曲面透镜502,则弓形液体弯月形透镜500将失效。因此,在优选的实施例中,弯月壁506被设计成允许在第一锐缘506-1与后曲面透镜502之间在其最近点处存在50微米的最小间隙。在其它实施例中,虽然透镜失效的风险随间隙减小而增加,但最小间隙可小于50微米。在其它实施例中,可增加间隙以降低透镜失效的风险,但整个透镜厚度也将增加,这可能是不期望的。
在本发明一些优选的实施例的另一个方面中,液体弯月边界505随其沿着弯月壁506行进的行为可使用杨氏方程推测。虽然杨氏方程定义了液滴在干燥表面上所引起的力平衡,并且假设为完全平坦的表面,但基本性质仍可应用于在弓形液体弯月形透镜500内产生的电润湿透镜环境。
可将第一量级的电能施加到透镜,例如当透镜处于未通电状态时。在施加第一量级的电能期间,实现了油504与盐溶液503之间的界面能量的平衡。这种状态在本文中可被称作液体弯月边界505。油504与弯月壁506,以及盐溶液503与弯月壁506形成液体弯月边界505与弯月壁506之间的平衡接触角。当被施加到弓形液体弯月形透镜500的电压量级改变时,界面能量的平衡将改变,从而导致液体弯月边界505与弯月壁506之间的接触角相应地改变。
在弓形液体弯月形透镜500的设计和功能中,液体弯月边界505与涂覆有绝缘体的弯月壁506的接触角是重要元素,不仅由于其在液体弯月边界505运动中对于杨氏方程的作用,而且由于该接触角与弓形液体弯月形透镜500的其它结构结合用于限制弯月面运动。
弯月壁506两端处的中断部分,例如锐缘506-1和506-2,用作液体弯月面505运动的边界,因为其将要求所施加电势的显著变化以实现液体弯月面接触角的充分变化,从而使液态弯月边界505运动通过锐缘中的一者。作为非限制性例子,在一些实施例中,液体弯月边界505与弯月壁506的接触角在15°至40°的范围内,然而液体弯月边界505与第二锐缘506-2之外的步位507的接触角可能在90°至130°的范围内,并且在一些优选的实施例中为约110°。
可将电压施加到透镜,从而导致液体弯月边界505沿着弯月壁506朝第二锐缘506-2运动。液体弯月边界505与涂覆有绝缘体的弯月壁506之间的自然接触角将致使液体弯月边界505在第二锐缘506-2处停止,除非提供明显更高的电压。
在弯月壁506的一端处,第一锐缘506-1通常限定一个界限,超过该界限液体弯月边界505通常不会运动。在一些实施例中,第一锐缘506-1被构造为锐缘边缘。在其它优选的实施例中,第一锐缘506-1具有限定的小径向表面,其可被制造成具有缺陷的可能性较小。导电体、绝缘体和其它可能的期望的涂层可能无法均匀地且按预期沉积在锐缘边缘上,但径向表面的限定的半径边缘可更可靠地被涂覆。
在一些实施例中,第一锐缘506-1被构造成约90°的角度,其中限定的半径为约10微米。该锐缘也可被制造成具有小于90°的角度。在一些实施例中,具有大于90°角度的锐缘可用于增加锐缘的坚固性,但该设计将占据更多的透镜空间。
在多个实施例中,锐缘506-1和/或506-2的限定的半径可在5微米至50微米的范围内。可使用较大的限定的半径来改善涂层的可靠性,但代价是在透镜设计的紧密的范围内使用更多的空间。在这方面,正如在许多其它透镜设计领域中,需在易于制造、透镜功能最佳化以及尺寸最小化之间作出权衡。可使用各种变量来制造实用、可靠的弓形液体弯月形透镜500。
在一些实施例中,较大的锐缘半径可与两个相邻锐缘之间的侧壁上的改善的表面光洁度结合使用。在一些实施例中,可能期望从第一半径(锐缘)至第二半径(锐缘)的表面为平滑的且不具有中断部分,其中这有助于使用相同的工具切割用于形成锐缘的模具。锐缘中所包括的半径可被切割成模具表面,其中所述模具表面半径大于锐缘半径。其中所述模具表面为包括侧壁和一个或多个锐缘的连续表面。较大的工具半径可能一般涉及对应的切割中的更平滑的表面光洁度。
第二锐缘506-2包括设计成当电压被施加到弓形液体弯月形透镜500时限制油运动的结构。在一些实施例中,第二锐缘506-2也可包括大致尖的端部,或在其它实施例中,第二锐缘506-2可包括介于5微米和25微米之间、最优选地为10微米的限定的半径。10微米的半径良好地用作锐缘并且可使用单点金刚石车削车床加工或注塑方法制造。
延伸到前曲面透镜501的光学区域508的起始处的垂直或几乎垂直步位507可被包括在第二锐缘506-2与弯月壁506相对的一侧上。在一些实施例中,步位507的高度为120微米,但其也可在50微米至200微米的范围内。
在一些实施例中,步位507可与光轴成约5°的角度。在其它实施例中,步位507的角度可为小至1°或2°的角度,或可成大于5°的角度。与光轴成较小角度的步位507将通常用作弯月面运动更有效的限制物,因为其需要液体弯月边界505的接触角的更大变化,以使弯月壁506运动离开并运动到步位507上。从步位507至光学区域508起始处的过渡区的半径为25微米。较大的半径将在透镜设计中不必要地占据更多的空间。如果需要获得空间,则较小的半径是可能的并且可被实施。在该领域以及其它透镜领域中,使用限定的半径而非理论锐缘的决定部分地基于用于透镜元件的注塑方法的电势运动。步位507和光学区域508起始处之间的弯曲,在注塑方法期间将改善塑性流,并且导致透镜具有最佳强度和应力处理特性。
现在参见图6,其示出了弓形液体弯月形透镜的非球形弯月壁601元件的俯视截面图。在图6中,非球形弯月壁601的形状被夸大以用于强调。如果用实际比例绘图,那么图6将示出具有非常轻微非球形形状的弯月壁,使得其在肉眼下将呈现球形。在大多数优选实施例中,非球形弯月壁被制造为椭圆形形式。从而,复曲面形透镜可以被制造成具有轻微椭圆形的液体弯月面。
优选实施例包括球形弓形液体弯月形透镜组件中的非球形弯月壁601。其它实施例在非球形弓形液体弯月形透镜组件中结合有非球形弯月壁601。
现在参见图7,弓形液体弯月形透镜中的非球形弯月壁701的俯视正交视图示出为包括第一锐缘702、第二锐缘703和光学区域704。与在图6中一样,椭圆形的量级在图7中再次被强调。液体弯月面在线705处接触非球形弯月壁701。在该图示中,液体弯月面接触线705处于通电状态,更靠近第二锐缘703。在未通电状态中,液体弯月面接触线705将处于第一锐缘702处或者更靠近第一锐缘702。
采用在构造上为椭圆形的弯月壁,允许第一弓形光学件和第二弓形光学件之间的腔体为非球形,并且所得到的油和盐溶液采取复曲面的片段的形式。所得到的的透镜包括能够矫正散光的圆柱度、轴和光焦度。通过改变弯月壁的椭圆形的量级来实现特定的圆柱度。轴由旋转度控制,在该旋转度下,椭圆形在弓形液体弯月形透镜组件中对准。除了散光矫正之外,当施加第一电压水平以使得液体弯月面运动到第一状态时,在具有非球形弯月壁的弓形液体弯月形透镜中可以获得用于远视的特定光焦度。可以施加较高的第二电压水平,以进一步使液体弯月面运动,从而获得用于近视的光焦度矫正。或者,在包封弓形液体弯月形透镜的透镜中可以出现用于远视的光焦度矫正,而在具有非球形弯月壁的弓形液体弯月形透镜中进行散光和近视矫正。
具有非球形弯月壁的液体弯月形透镜包括各种透镜稳定方法,以保持透镜在眼睛上的正确定位,以用于散光矫正。利用诸如压载或更加先进的加速稳定设计的技术来获得稳定。在弓形液体弯月形透镜中或者在包封弓形液体弯月形透镜的透镜中实施稳定技术。
虽然已结合具体实施例对本发明进行了描述,但本领域的技术人员应当理解在不脱离本发明的范围的前提下可作出各种变化,或使用等效物代替其元件。此外,在不脱离本发明的范围的前提下,可根据本发明的教导内容作出许多修改形式,以适应具体情况或材料。
因此,旨在使本发明不受限于作为执行本发明的最佳设想方式公开的具体实施例,而是本发明将包括落入所附权利要求书的范围和实质内的所有实施例。

Claims (32)

1.一种光学透镜,包括:
前透镜,所述前透镜包括前透镜外表面和前透镜内表面;
后透镜,所述后透镜包括后透镜内表面和后透镜外表面,所述后透镜紧邻所述前透镜定位,使得在所述前透镜内表面与所述后透镜内表面之间形成腔体;
一定体积的盐溶液和油,所述一定体积的盐溶液和油包含在形成于所述前透镜内表面与所述后透镜内表面之间的所述腔体内,在所述一定体积的盐溶液和油之间包括弯月面;以及
弯月壁,所述弯月壁形成在所述前透镜的内表面的区域上,所述弯月壁包括锥形截头的形状,其横截面为椭圆形。
2.根据权利要求1所述的光学透镜,其中所述前透镜外表面和所述前透镜内表面以及所述后透镜外表面和所述后透镜内表面中的至少之一是平坦的。
3.根据权利要求1所述的光学透镜,其中所述前透镜和所述后透镜包括弓形透镜。
4.根据权利要求3所述的光学透镜,还包括在所述弯月壁的至少一部分上的导电涂层。
5.根据权利要求4所述的光学透镜,其中所述油的体积少于包含在所述腔体内的所述盐溶液的体积。
6.根据权利要求5所述的光学透镜,其中所述油的体积为所述盐溶液的体积的66%或更多。
7.根据权利要求5所述的光学透镜,其中所述油的体积为所述盐溶液的体积的90%或以下。
8.根据权利要求4所述的光学透镜,其中所述油的密度等于所述盐溶液的密度。
9.根据权利要求4所述的光学透镜,其中所述油的密度在所述盐溶液的密度的10%内。
10.根据权利要求4所述的光学透镜,其中所述油的密度在所述盐溶液的密度的5%内。
11.根据权利要求4所述的光学透镜,其中所述导电涂层从所述腔体内部的区域延伸至所述腔体外部的区域。
12.根据权利要求11所述的光学透镜,其中所述腔体外部的导电涂层的区域形成用于向所述光学透镜提供电势的电端子。
13.根据权利要求11所述的光学透镜,其中所述盐溶液和所述油形成弯月面,并且向所述腔体外部的导电涂层的区域施加电势致使所述弯月面和所述弯月壁之间的接触位置发生变化。
14.根据权利要求13所述的光学透镜,其中所述电势包括直流电。
15.根据权利要求13所述的光学透镜,其中所述电势在5.0伏特至60.0伏特之间。
16.根据权利要求15所述的光学透镜,其中所述电势为20.0伏特。
17.根据权利要求15所述的光学透镜,其中所述电势为5.0伏特。
18.根据权利要求13所述的光学透镜,其中所述电势在3.5伏特至7.5伏特之间。
19.根据权利要求5所述的光学透镜,其中所述前透镜外表面具有不为0的光焦度。
20.根据权利要求5所述的光学透镜,其中所述前透镜内表面具有不为0的光焦度。
21.根据权利要求5所述的光学透镜,其中所述后透镜外表面具有不为0的光焦度。
22.根据权利要求5所述的光学透镜,其中所述后透镜内表面具有不为0的光焦度。
23.根据权利要求5所述的光学透镜,还包括穿过所述前透镜和所述后透镜中的一者或两者的通道以及填充所述通道的导电材料。
24.根据权利要求23所述的光学透镜,还包括与填充所述通道的所述导电材料电连通的端子。
25.根据权利要求24所述的光学透镜,其中向所述端子施加电势致使所述弯月面的形状发生变化。
26.根据权利要求5所述的光学透镜,还包括沿着所述前透镜内表面的至少一部分的绝缘体涂层,其中所述绝缘体涂层包含电绝缘体。
27.根据权利要求26所述的光学透镜,其中所述电绝缘体包括Parylene C™和Teflon AF中的一者。
28.根据权利要求26所述的光学透镜,其中所述绝缘体涂层包括边界区域,以保持所述导电涂层和所述盐溶液之间的分离,所述盐溶液包含在所述前透镜和所述后透镜之间的腔体中。
29.根据权利要求1所述的光学透镜,其中包括所述弯月壁的所述锥形截头的角度为在30°和50°之间。
30.根据权利要求29所述的光学透镜,还包括在所述弯月壁上的弯月形锐缘,所述弯月形锐缘包括用于包含所述弯月面沿所述弯月壁移动的角度结构。
31.根据权利要求30所述的光学透镜,其中所述弯月形锐缘包括径向表面部分。
32.根据权利要求31所述的光学透镜,其中所述径向表面部分具有在5微米至25微米范围内的半径。
CN201180046963.XA 2010-09-29 2011-09-27 具有非球形弯月壁的液体弯月形透镜 Expired - Fee Related CN103140780B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US38751010P 2010-09-29 2010-09-29
US61/387510 2010-09-29
US13/232,453 US8638502B2 (en) 2010-09-29 2011-09-14 Liquid meniscus lens with non-spherical meniscus wall
US13/232453 2011-09-14
PCT/US2011/053414 WO2012044607A1 (en) 2010-09-29 2011-09-27 Liquid meniscus lens with non-spherical meniscus wall

Publications (2)

Publication Number Publication Date
CN103140780A CN103140780A (zh) 2013-06-05
CN103140780B true CN103140780B (zh) 2016-11-02

Family

ID=45870400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180046963.XA Expired - Fee Related CN103140780B (zh) 2010-09-29 2011-09-27 具有非球形弯月壁的液体弯月形透镜

Country Status (13)

Country Link
US (1) US8638502B2 (zh)
EP (1) EP2622389A1 (zh)
JP (1) JP6104803B2 (zh)
KR (1) KR101837932B1 (zh)
CN (1) CN103140780B (zh)
AR (1) AR083218A1 (zh)
AU (1) AU2011307339B2 (zh)
BR (1) BR112013007650A2 (zh)
CA (1) CA2812493A1 (zh)
RU (1) RU2554893C2 (zh)
SG (1) SG189132A1 (zh)
TW (1) TWI516809B (zh)
WO (1) WO2012044607A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101942705B1 (ko) 2011-08-31 2019-01-29 존슨 앤드 존슨 비젼 케어, 인코포레이티드 프로세서 제어형 안내 렌즈 시스템
US8888277B2 (en) * 2012-10-26 2014-11-18 Johnson & Johnson Vision Care, Inc. Contact lens with improved fitting characteristics
SG2013091087A (en) 2013-01-09 2014-08-28 Johnson & Johnson Vision Care Multi-piece insert device with glue seal for ophthalmic devices
SG2013091095A (en) * 2013-01-09 2014-08-28 Johnson & Johnson Vision Care Method of forming a multi-piece insert device with seal for ophthalmic devices
US9481138B2 (en) * 2013-03-15 2016-11-01 Johnson & Johnson Vision Care, Inc. Sealing and encapsulation in energized ophthalmic devices with annular inserts
US9977260B2 (en) 2013-03-15 2018-05-22 Johnson & Johnson Vision Care, Inc. Sealing and encapsulation in energized ophthalmic devices with annular inserts
US9690118B2 (en) * 2014-06-13 2017-06-27 Verily Life Sciences Llc Eye-mountable device to provide automatic accommodation and method of making same
US10874506B2 (en) * 2018-01-30 2020-12-29 Verily Life Sciences Llc Intraocular lens with reinforcing layer
WO2020120806A1 (en) * 2018-12-14 2020-06-18 Optotune Ag Shape changing optical device for ophthalmic testing devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1794018A (zh) * 2004-12-23 2006-06-28 瓦里奥普蒂克公司 变焦透镜
CN101002115A (zh) * 2002-02-14 2007-07-18 皇家飞利浦电子股份有限公司 可变焦透镜

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754112A (zh) 2003-02-25 2006-03-29 皇家飞利浦电子股份有限公司 包括由两种不可混溶流体的界面形成的可变透镜的用于光盘记录/再现装置的物镜
US7251392B2 (en) 2003-05-06 2007-07-31 Koninklijke Philips Electronics N.V. Reduction of driving voltage in a switchable element
EP1623263B1 (en) 2003-05-06 2012-10-03 Koninklijke Philips Electronics N.V. Electrowetting module
EP1623262B1 (en) 2003-05-06 2011-10-19 Koninklijke Philips Electronics N.V. Electrowetting module
CN100374900C (zh) 2003-05-14 2008-03-12 皇家飞利浦电子股份有限公司 可变形状透镜
US20060152672A1 (en) * 2003-07-08 2006-07-13 Koninklijke Philips Electronics N.V. Sunglasses with adaptable transmissivity
US7446945B2 (en) 2004-01-12 2008-11-04 Koninklijke Philips Electronics N.V. Electrowetting device
TW200528789A (en) 2004-01-14 2005-09-01 Koninkl Philips Electronics Nv Variable focus lens
US7311398B2 (en) 2004-03-05 2007-12-25 Koninklijke Philips Electronics N.V. Variable focus lens
EP1733256A1 (en) 2004-03-30 2006-12-20 Koninklijke Philips Electronics N.V. Compact switchable optical unit
TR201910770T4 (tr) 2004-03-31 2019-08-21 Koninklijke Philips Nv Elektroıslatma tabanlı makro anahtar barındıran odaklama lensine sahip kamera modülü .
JP2007536593A (ja) 2004-05-07 2007-12-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エレクトロウェッティングセル及びそれを駆動する方法
EP1889100B1 (en) 2005-05-20 2013-12-25 Koninklijke Philips N.V. Electrowetting lens, lens system and electronic device
WO2007107589A1 (en) * 2006-03-21 2007-09-27 Varioptic Intraocular implant
EP1906213A1 (en) 2006-09-29 2008-04-02 Varioptic Electrowetting device with segmented electrode
US7864440B2 (en) 2006-11-24 2011-01-04 Varioptic, S.A. Optical lens with variable focal length
JP5256843B2 (ja) * 2008-05-13 2013-08-07 ソニー株式会社 光学素子及びその製造方法
US8649102B2 (en) * 2008-12-23 2014-02-11 Parrot S.A. Optical electrowetting device
US8665526B2 (en) 2010-05-14 2014-03-04 Johnson & Johnson Vision Care, Inc. Arcuate liquid meniscus lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101002115A (zh) * 2002-02-14 2007-07-18 皇家飞利浦电子股份有限公司 可变焦透镜
CN1794018A (zh) * 2004-12-23 2006-06-28 瓦里奥普蒂克公司 变焦透镜

Also Published As

Publication number Publication date
TWI516809B (zh) 2016-01-11
US8638502B2 (en) 2014-01-28
AU2011307339B2 (en) 2015-04-09
US20120075711A1 (en) 2012-03-29
BR112013007650A2 (pt) 2016-08-09
CA2812493A1 (en) 2012-04-05
SG189132A1 (en) 2013-05-31
RU2013119640A (ru) 2014-11-10
RU2554893C2 (ru) 2015-06-27
EP2622389A1 (en) 2013-08-07
KR101837932B1 (ko) 2018-04-26
KR20130114149A (ko) 2013-10-16
TW201224528A (en) 2012-06-16
CN103140780A (zh) 2013-06-05
WO2012044607A1 (en) 2012-04-05
JP6104803B2 (ja) 2017-03-29
AU2011307339A1 (en) 2013-05-02
JP2013540285A (ja) 2013-10-31
AR083218A1 (es) 2013-02-06

Similar Documents

Publication Publication Date Title
CN103140780B (zh) 具有非球形弯月壁的液体弯月形透镜
CN103140779B (zh) 包括可变电压区的液体弯月形透镜
CN103080781B (zh) 具有多凸面弯月壁的透镜
CN103038673B (zh) 具有凹环区段弯月壁的液体弯月形透镜
CN103443665B (zh) 具有多凹面弯月壁的透镜
JP2013543597A5 (zh)
JP2013541734A5 (zh)
CN103097922B (zh) 具有凸环区段弯月壁的液体弯月形透镜
CN103124913B (zh) 具有多区段线性弯月壁的透镜
CN103003723B (zh) 具有锥形截头弯月壁的透镜
CN103154779B (zh) 包括具有微通道的弯月壁的液体弯月形透镜
CN103124920B (zh) 包括梯度厚度电介质涂层的液体弯月形透镜
TWI530712B (zh) 負添加液體彎月型透鏡
AU2015201129B2 (en) Lens with conical frustum meniscus wall

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161102

Termination date: 20190927

CF01 Termination of patent right due to non-payment of annual fee