Search Images Maps Play YouTube Gmail Drive Calendar More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN101915989 B
Publication typeGrant
Application numberCN 201010239213
Publication date14 Dec 2011
Filing date28 Jul 2010
Priority date28 Jul 2010
Also published asCN101915989A
Publication number201010239213.1, CN 101915989 B, CN 101915989B, CN 201010239213, CN-B-101915989, CN101915989 B, CN101915989B, CN201010239213, CN201010239213.1
Inventors夏军, 姚晓寅
Applicant东南大学
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Electric field force-controlled liquid lens
CN 101915989 B
Abstract
The invention discloses an electric field force-controlled liquid lens. In the liquid lens, a barrier wall (3) is manufactured on a second transparent substrate (4), a second electrode (8) is covered on the barrier wall (3), a first liquid (5) is injected into the second electrode (8), a second liquid (2) is covered on the first liquid (5), a first electrode (7) is covered on a first transparent substrate (1), and the first electrode (7) is covered on the second liquid (2). The liquid lens structure does not need insulation layers, can not cause electrochemical reactions and has the advantages of fixed lens axis, low drive voltage and simple structure.
Claims(4)  translated from Chinese
1. 一种电场力控制的液体透镜,包括第一透明基板(1)、第二透明基板G)、第一电极(7)、第二电极(8)、第一液体(5)以及第二液体(6),其特征是:在所述的第二透明基板(4) 上制作有障壁(3),在所述的障壁C3)上覆盖所述的第二电极(8),在第二电极(8)之间灌注所述的第一液体(5),所述的第二液体(覆盖在所述的第一液体(上,在所述的第一透明基板(1)上覆盖所述的第一电极(7),该第一电极(7)位于所述的第二液体(上,所述的第一液体(为不导电液体,所述的第二液体(为不导电液体。 A liquid lens control electric force, comprising a first transparent substrate (1), the second transparent substrate G), a first electrode (7), a second electrode (8), a first liquid (5) and a second liquid (6), characterized in that: on said second transparent substrate (4) has made barrier (3), covering the second electrode (8), wherein said barrier C3), the second perfusion between the electrode (8) of the first liquid (5), said second liquid ( cover in said first liquid (the , overlying said first transparent substrate (1) said first electrode (7), the first electrode (7) in said second liquid (the , said first liquid ( non-conductive liquid, said second liquid ( of non-conductive liquid.
2.根据权利要求1所述的一种电场力控制的液体透镜,其特征是:第二电极(8)上覆盖疏水层。 An electric field according to claim force control liquid lens 1, characterized in that: the second electrode (8) covers the hydrophobic layer.
3.根据权利要求1所述的一种电场力控制的液体透镜,其特征是:在第一电极(7)上增加薄膜晶体管阵列。 3. An electric field forces claim control of the liquid lens 1, characterized in that: increase the thin film transistor array on the first electrode (7).
4.根据权利要求1所述的一种电场力控制的液体透镜,其特征是:液体透镜单元为旋转对称结构,排列方式可以是行列矩阵式排列、或品字状排列、或蜂窝状排列。 4. An electric field force control of the liquid lens according to claim 1, characterized in that: the liquid lens unit is rotationally symmetric structure, the arrangement can be arranged in a matrix row, arranged or shaped article, or a honeycomb arrangement.
Description  translated from Chinese

一种电场力控制的液体透镜 An electric force liquid lens control

技术领域 Technical Field

[0001] 本发明涉及一种液体透镜结构,尤其是涉及一种在电压控制下能有效改变液体形状从而改变焦距的介电泳液体透镜结构。 [0001] The present invention relates to a liquid lens structure, particularly relates to a voltage control can effectively change the shape of the liquid thereby changing dielectrophoretic focal length of the liquid lens structure.

背景技术 Background

[0002] 液体透镜是由液体制成,模仿人眼晶状体的聚焦原理,通过控制液体发生形状变化从而引起折射率变化来实现聚焦和变焦。 [0002] The liquid lens is made from a liquid, imitating the human eye lens focusing principle, by causing changes in the refractive index of the liquid to control the shape change occurs to achieve focus and zoom. 与传统的透镜相比,液体透镜具有体积小、无需外部机械装置、反应速度快、无磨损、寿命长、成本低等特点。 Compared with traditional lenses, liquid lens with a small, without external mechanical device, response speed, no wear, long life, low cost. 液体透镜能在电压下可控地动态调节焦距,具有传统透镜不可比拟的优点。 Liquid lens can be controlled dynamically adjust the focus at a voltage, it has incomparable advantages of traditional lenses. 液体透镜已经开始逐渐走入市场,应用于手机,相机,内窥镜等数码摄影、医疗、工业、通信领域。 Liquid lens has begun into the market, used in mobile phones, cameras, endoscopes and other digital photography, medical, industrial, communications. 液体透镜主要有以下几种工作原理:1、 通过机械力改变透镜外形和体积;2、通过加电改变液晶分子排列;3、基于电润湿或介电泳的原理使液体发生形变。 Liquid lenses are the following works: 1, change the shape and volume of the lens by a mechanical force; 2, by changing the liquid crystal molecules are arranged powered; 3, based on the principle of dielectrophoresis electrowetting or liquid deformed.

[0003] 电润湿现象可以用^ung-Lippmann方程来描述: [0003] The electrowetting phenomenon can be used ^ ung-Lippmann equation to describe:

[0004] cos θ = cos θγ + U2 [0004] cos θ = cos θγ + U2

2ασ/ν 2ασ / ν

[0005] 其中,θ为施加电压之后的液固接触角,θ γ为无电压时的初始液固接触角,%为真空介电常数,为介质层的相对介电常数,d为介质层的厚度,Qlv为液体和空气接触的表面张力,U为施加的电压。 [0005] where, θ is the applied voltage after the solid liquid contact angle, θ γ when no voltage is initial liquid-solid contact angle,% vacuum dielectric constant, the relative permittivity of the dielectric layer, d is the dielectric layer thickness, the surface tension of the liquid and air Qlv contact, U is the applied voltage. 1995年Gorman等人第一次实现了基于电润湿原理的液体透镜。 Gorman et al. 1995 for the first time to achieve a liquid lens based on electrowetting principle. 他们将液滴置于透明电极上,通过施加电压使液滴发生了形变[1]。 They will be placed on the droplets of the transparent electrode, by applying a voltage to the droplet deformation occurs [1]. 2000年,Berge和Peseux在先前Gorman等人实验的基础上,在电极上覆盖了介质层。年 2000, Berge and Peseux Gorman, who on the basis of previous experiments, the electrode covering the dielectric layer. 他们的问题在于如何将液滴中心固定在光轴上[2]。 Their problem is how liquid droplets central fixed on the optical axis [2]. 2004年Wiilips公司提出了流体聚焦技术,将导电水溶液和油灌注到圆柱体容器中,在底面和侧壁上施加电压,在液体表面发生形变的同时,确保形变液面固定在圆柱体轴线上[3]。 2004 Wiilips company proposes fluid focus technique, the conductive solution and poured into a cylindrical oil vessel, a voltage is applied on the bottom surface and side walls, at the same time, the liquid surface is deformed, the deformation level to ensure that the axis of the cylinder is fixed [ 3]. 随后,Varioptic公司将导电溶液和油封装在圆锥形容器中,使液体透镜在光轴稳定性上有了很大的提高W]。 Subsequently, Varioptic conductive solution and an oil company packaged in a conical container, the liquid lens has been greatly improved stability on the optical axis W]. 但电润湿液体透镜多选用导电性溶液作为其中一种液体,实验表明易发生电化学反应,若要克服电化学反映则需在电极上覆盖绝缘层,为实现较低的工作电压,通常需要很薄的绝缘层,这在工艺制备上具有一定难度。 However, more use of electrowetting liquid lens solution as one of the conductive liquid, experiments show that the electrochemical reaction prone, to reflect the need to overcome the electrochemical insulating cover layer on the electrode, to achieve a lower operating voltage, typically require a thin insulating layer, which has a certain degree of difficulty in the process of preparation.

[0006] 介电泳控制不导电液体也能运用到液体透镜当中。 [0006] dielectrophoresis control non-conductive liquids which can be applied to the liquid lens. Chih-Cheng Cheng和J. Andrew Yeh在上下基板为ITO玻璃的容器中灌入一种低介电常数液滴和同密度的高介电常数的液体,利用DEP原理,在电压0-200V范围内焦距从34mm变化到12mm,上升和下降时间分别为650ms和300ms[5] [6]。 Chih-Cheng Cheng and J. Andrew Yeh poured into droplets a low dielectric constant and a high dielectric constant with the density of the liquid at the upper and lower substrates of ITO glass container, utilizing the principle of DEP, in the range of the voltage 0-200V changes in focal length from 34mm to 12mm, rise and fall times are 650ms and 300ms [5] [6]. 但此结构下的透镜,液滴会在平板上移动,不能控制透镜的位置。 However, this structure under the lens, droplets on the plate movement, the position can not control the lens. Hongwen Ren和Siin-Tson胁利用DEP力使液滴形成透镜阵列的同时改变焦距[7]。 Hongwen Ren and Siin-Tson threatened use of force DEP droplet formation while changing the focal length of the lens array [7]. 这样利用电场控制液滴分开并形成透镜,不能控制每个液滴的大小,不利于实现工业生产的标准化。 Thus the use of an electric field to control the droplet and forming a lens, can not control the size of each droplet is not conducive to standardization of industrial production. Su Xu, Yeong-Jyh Lin和Siin-Tson胁提出了碗型电极DEP微透镜阵列的制备[8], 但碗型电极制备困难,很容易因为各种原因导致电场分布不均勻,而使液体运动不能形成透镜效果。 Su Xu, Yeong-Jyh Lin and Siin-Tson threats made preparation bowl-shaped electrode DEP microlens array [8], but difficult to prepare a bowl-shaped electrode, it is easy because of various causes non-uniform electric field distribution, leaving the liquid movement can not form a lens effect.

[0007] 为了克服现有液体透镜的不足,本发明提供一种介电泳液体透镜结构,采用两种 [0007] In order to overcome the shortcomings of conventional liquid lens, the present invention provides a dielectrophoretic liquid lens structure, using two

3不导电液体,避免了电化学反应,免去了介质层的制备。 3 non-conductive liquid, avoiding the electrochemical reaction, eliminating the need for preparation of the dielectric layer. 壁电极的加入使电场的场强分布集中在障壁周围,液体界面处恰好能获得较高的场强,从而能在较低的电压使液体运动。 Was added to make the field of wall-electrode electric field intensity distribution concentrated around the barrier, the liquid at the interface just to obtain a higher field strength, which can make the motion of the liquid at a lower voltage. 壁电极还能控制液体位置不发生移动,并且液体界面离开壁电极后不再向中间运动。 Wall electrode can control the liquid position does not move, and after leaving the wall electrode liquid interface is no longer the middle movement. 本发明使用的两种不导电且不相混容的液体,其表面自由能和介电常数与现有介电泳液体透镜相比也有所不同,使透镜的控制电压,透镜效果有一定区别。 Two of the present invention does not use a non-conductive liquid mixed city, its surface free energy and also different dielectric constant compared to the prior DEP liquid lens, the lens control voltage, lens effect a certain distinction.

[0008] 参考文献: [0008] References:

[0009] [1]Christopher B. Gorman, Hans A. Biebuyck, George Μ. ffhitesides. Control of the Shape of Liquid Lenses on a Modified Gold Surface Using an Applied Electrical Potential across a Self-Assembled Monolayer. Langmuir,1995,11 (6), 2242-2246. [0009] [1] Christopher B. Gorman, Hans A. Biebuyck, George Μ. Ffhitesides. Control of the Shape of Liquid Lenses on a Modified Gold Surface Using an Applied Electrical Potential across a Self-Assembled Monolayer. Langmuir, 1995,11 (6), 2242-2246.

[0010] [2]B.Berge and J. Peseux. Variable focal lens controlled by an external voltage :An application of electrowetting. Eur. Phys. J. E,2000,3,159-163. . [0010] [2] B.Berge and J. Peseux Variable focal lens controlled by an external voltage:... An application of electrowetting Eur Phys J. E, 2000,3,159-163.

[0011] [3]BHW Hendriks, S. Kuiper, MAJ Van Aa, CA Renders and TW Tukker. Electrowetting-Based Variable-Focus Lens for Miniature Systems. OPTICAL REVIEW, 2005,12(3) ,255-259. [0011] [3] BHW Hendriks, S. Kuiper, MAJ Van Aa, CA Renders and TW Tukker. Electrowetting-Based Variable-Focus Lens for Miniature Systems. OPTICAL REVIEW, 2005,12 (3), 255-259.

[0012] [4] Lisa Saurei, Jerome Peseux, Frederic Laune and Bruno Berge. Tunable liquid lens based on electrowetting technology :principle, properties and applications.l_3Sept 2004, presented at the 10th Annual Micro-optics Conference, Jena, Germany. [0012] [4] Lisa Saurei, Jerome Peseux, Frederic Laune and Bruno Berge Tunable liquid lens based on electrowetting technology:. Principle, properties and applications.l_3Sept 2004, presented at the 10th Annual Micro-optics Conference, Jena, Germany.

[0013] [5]Chih-Cheng Cheng, C. Alex Chang and J. Andrew Yeh. Variable focus dielectric liquid droplet lens.OPTICS EXPRESS,2006,14(9),4101-4106. [0013] [5] Chih-Cheng Cheng, C. Alex Chang and J. Andrew Yeh. Variable focus dielectric liquid droplet lens.OPTICS EXPRESS, 2006,14 (9), 4101-4106.

[0014] [6]Chih-Cheng Cheng and J. Andrew Yeh. Dielectrically actuated liquid lens. OPTICSEXPRESS,2007,15(12),7140-7145. [0014] [6] Chih-Cheng Cheng and J. Andrew Yeh. Dielectrically actuated liquid lens. OPTICSEXPRESS, 2007,15 (12), 7140-7145.

[0015] [7]Hongwen Ren and Shin-Tson ffu. Tunable-focus liquid microlens array using dielectrophoretic effect. OPTICS EXPRESS,2008,16(4),2646-2652. [0015] [7] Hongwen Ren and Shin-Tson ffu. Tunable-focus liquid microlens array using dielectrophoretic effect. OPTICS EXPRESS, 2008,16 (4), 2646-2652.

[0016] [8]Su Xu, Yeong-Jyh Lin, and Shin-Tson ffu. Dielectric liquid microlens with well-shaped Electrode. OPTICS EXPRESS,2009,17(13),10499-10505. [0016] [8] Su Xu, Yeong-Jyh Lin, and Shin-Tson ffu. Dielectric liquid microlens with well-shaped Electrode. OPTICS EXPRESS, 2009,17 (13), 10499-10505.

发明内容 DISCLOSURE

[0017] 技术问题:为了克服电润湿液体透镜易击穿,介质层制备困难,及现有介电泳液体透镜结构难以固定液体位置等问题,本发明提供一种介电泳液体透镜结构,该结构不易击穿,无需介质层,能有效固定液体位置,实现动态控制焦距。 [0017] Technical Problem: In order to overcome the breakdown electrowetting liquid lens is easy, difficult to prepare a dielectric layer, and conventional dielectrophoresis liquid difficult to fix the liquid lens structure location problem, the present invention provides a dielectrophoretic liquid lens structure which easy breakdown, without a dielectric layer, can effectively fixing the liquid position, dynamic control focus.

[0018] 技术方案:本发明解决其技术问题所采用的技术方案是:该结构由纵横排列的液体透镜单元组成,每个液体透镜单元的组成为:在第二透明基板上制作障壁,在障壁上覆盖第二电极,在第二电极之间灌注第一液体,第二液体覆盖在第一液体上,第一透明基板上覆盖第一电极,第一电极位于第二液体上。 [0018] The technical solution: aspect of the present invention is used for solving the technical problem is: The structure consists of a liquid lens unit composed of vertical and horizontal arrangement, the composition of each liquid lens unit is: make the barriers on the second transparent substrate, the barrier covering the second electrode, the second electrode between the first perfusion liquid, the second liquid in the first liquid on the cover, covering the first electrode on the first transparent substrate, a first electrode located on the second liquid.

[0019] 在本发明优选技术方案中,第二电极上覆盖有疏水层。 [0019] In a preferred aspect of the present invention, covered with a hydrophobic layer on the second electrode.

[0020] 在本发明优选技术方案中,在第一电极上增加薄膜晶体管阵列,每个液体透镜单元内第一液体和第二液体的交界面可以单独调整,即液体透镜单元的焦距可单独调整。 [0020] In a preferred aspect of the present invention, an increase over the first electrode thin film transistor array, each liquid lens unit of the first and second liquids at the interface can be adjusted individually, that is the focal length of the liquid lens unit can be individually adjusted . [0021] 在本发明优选技术方案中,液体透镜单元为旋转对称结构,排列方式可以是行列矩阵式排列、或品字状排列、或蜂窝状排列。 [0021] In a preferred aspect of the present invention, the liquid lens unit is rotationally symmetric structure, the arrangement can be arranged in a matrix row, arranged or shaped article, or a honeycomb arrangement.

[0022] 有益效果:本发明的有益效果是,与传统电润湿透镜相比,第一液体和第二液体与第一电极和第二电极之间无需绝缘层,工作电压低,不易击穿,第一电极位于中间隔断上, 有利于固定透镜光轴位置,结构简单。 [0022] The beneficial effect: the beneficial effects of the present invention is between without electrowetting lens compared with conventional, first and second liquids to the first electrode and the second electrode insulation, low voltage, easy breakdown a first electrode located on the intermediate partition, is conducive to the fixed position of the optical axis of the lens, the structure is simple.

附图说明 Brief Description

[0023] 图1是本发明优选实施例结构图; [0023] FIG. 1 is a block diagram of a preferred embodiment of the present invention;

[0024] 以上的图中有:1、第一透明基板,2、第二液体,3、障壁,4、第二透明基板,5、第一液体,6、第一液面,7、第一电极,8、第二电极。 [0024] The above figures are: 1, a first transparent substrate 2, the second liquid, 3, barrier 4, the second transparent substrate 5, a first liquid, 6, a first level, 7, a first electrode 8, the second electrode.

具体实施方式 DETAILED DESCRIPTION

[0025] 图1所示为本发明优选实施例结构图,主要包括:第二透明基板4,可采用玻璃、透明树脂等材料,在第二透明基板4上制作障壁3,可以在第二透明基板4上直接印制金属网孔形成障壁3,障壁3可以直接作为第二电极8,例如银、铁、铜网孔等,或者利用SU-8等材料经紫外曝光形成此障壁3,再在障壁3上镀上导电膜形成第二电极8。 [0025] Figure 1 shows the structure view of a preferred embodiment of invention, including: a second transparent substrate 4, may be glass, transparent resin or the like, making the barrier 3 on the second transparent substrate 4, in the second transparent printed directly on the substrate 4 is formed of metal mesh barrier 3, the barrier 3 can be used directly as the second electrode 8, such as silver, iron, copper mesh, etc., or the use of SU-8 and other materials formed by UV exposure this barrier 3, and then in barrier coating is formed on the conductive film on the second electrode 8 3. 障壁3可以制成矩形、梯形等形状,也可以是没有尖角的圆弧形。 Barrier 3 may be made of a rectangular, trapezoidal shape, without sharp corners may be rounded. 在障壁3之间灌注第一液体5,第一液体5选用介电常数小、表面自由能小的液体,例如二甲基硅氧烷、正己烷、异辛烷、十六烷、正癸醇等,第二液体2覆盖在第一液体5上,第二液体2选用介电常数大、表面自由能大的液体,例如丙三醇、乙二醇等,也可以第一液体5选用介电常数大、表面自由能大的液体,而第二液体2选用介电常数小、表面自由能小的液体。 A first barrier between the infusion liquid 5 3, 5 selection of the first liquid dielectric constant is small, a small liquid surface free energy, such as dimethyl siloxane, n-hexane, isooctane, hexadecane, n-decyl alcohol etc., covering the second liquid in the first liquid 2 5, a second selection of dielectric constant of liquid 2, the surface free energy of large liquid, such as glycerol, ethylene glycol, etc., may be the first choice of the dielectric liquid 5 constant large, large liquid surface free energy, and the choice of the dielectric constant of the small second liquid 2, the liquid surface can be small freedom. 第一透明基板1同第二透明基板4 一样,可采用玻璃、透明树脂等材料。 A first transparent substrate 1 with, as the second transparent substrate 4, may be glass, transparent resin or the like. 第一透明基板1上需要镀上导电膜,形成第一电极7,也可以选用具有导电性的基板,例如ITO玻璃等。 A first transparent substrate coated with a conductive film need to form a first electrode 7 and to be used with a conductive substrate, e.g., ITO glass. 将第一电极7盖在第二液体2上,形成单透镜结构。 7 cover the first electrode on the second liquid 2, to form a single lens structure. 在第二电极8上还可以覆盖疏水层,例如,聚四氟乙烯,cytop等材料,以减小液体界面运动的迟滞性。 The second electrode 8 may also cover the hydrophobic layer, e.g., polytetrafluoroethylene, cytop other materials, to reduce the movement of the liquid interface hysteresis. 但是与电润湿器件不同,此处疏水层无需完整包覆第二电极8,当在第一电极7 和第二电极8之间施加电压时,第一液面6会发生移动,从而实现透镜动态调节焦距,例如第一电极7接地,第二电极8接正电压,第一电极7和第二电极8之间产生非均勻电场,第一液体5和第二液体2在非均勻电场下产生介电泳力,介电泳力作用介电常数大的液体,如第一液体5,向场强梯度大的地方流动,同时第一液面6发生形变,即在第二电极8的表面发生移动。 But with different electrowetting device, where the hydrophobic layer without complete coating of the second electrode 8, when a voltage is applied between the first electrode 7 and the second electrode 8, the first liquid 6 moves occur, in order to achieve the lens dynamically adjust the focus, such as a first electrode 7 is grounded, the second electrode 8 is connected to the positive voltage to generate a non-uniform electric field between 7 and 8 of the first electrode and the second electrode, the first liquid 5 and the second liquid 2 production in the non-uniform electric field dielectrophoretic force, the dielectrophoretic force liquid dielectric constant, as in the first liquid 5, to the large field gradient where the flow, while the first surface 6 is deformed, i.e. move occurs at the surface of the second electrode 8. 由于电场强度集中第二电极8周围,液体界面处恰好能获得较高的场强,从而在较低的电压下液体就能运动。 Due to the electric field strength concentrated around the second electrode 8, the interface between the liquid just to obtain a higher field strength, resulting in a lower voltage can be liquid movement.

[0026] 图1中液体单透镜单元为旋转对称结构,液体透镜阵列排列方式可以是行列矩阵式排列、或品字状排列、或蜂窝状排列。 [0026] FIG. 1 is a liquid single-lens unit rotationally symmetrical structure, the liquid lens array arrangement can be arranged in the ranks of the matrix, or product-shaped arrangement, or honeycomb arrangement. 另外,在第一电极7上增加薄膜晶体管阵列,每个液体透镜单元内第一液体和第二液体的交界面可以单独调整,即液体透镜单元的焦距可单独调整。 Further, the first thin film transistor array electrode 7 increases, the liquid in each of the first lens unit and second liquids at the interface can be adjusted individually, i.e., the focal length of the liquid lens unit can be individually adjusted.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
CN100557466C25 Mar 20084 Nov 2009东南大学Thin liquid lens array
CN101482627A17 Feb 200915 Jul 2009东南大学Microlens array with small aberration
JP2008172682A Title not available
JP2009186666A Title not available
WO2008062067A123 Nov 200729 May 2008VariopticOptical lens with variable focal length
Classifications
International ClassificationG02B3/14, G02B26/02
Legal Events
DateCodeEventDescription
15 Dec 2010C06Publication
2 Feb 2011C10Entry into substantive examination
14 Dec 2011C14Grant of patent or utility model
16 Sep 2015EXPYTermination of patent right or utility model