Search Images Maps Play YouTube Gmail Drive Calendar More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN101558332 A
Publication typeApplication
Application numberCN 200780045743
PCT numberPCT/US2007/023345
Publication date14 Oct 2009
Filing date6 Nov 2007
Priority date7 Nov 2006
Also published asCN101558332B, US7324287, WO2008057525A1
Publication number200780045743.9, CN 101558332 A, CN 101558332A, CN 200780045743, CN-A-101558332, CN101558332 A, CN101558332A, CN200780045743, CN200780045743.9, PCT/2007/23345, PCT/US/2007/023345, PCT/US/2007/23345, PCT/US/7/023345, PCT/US/7/23345, PCT/US2007/023345, PCT/US2007/23345, PCT/US2007023345, PCT/US200723345, PCT/US7/023345, PCT/US7/23345, PCT/US7023345, PCT/US723345
InventorsJ高里尔
Applicant康宁股份有限公司
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Multi-fluid lenses and optical devices incorporating the same
CN 101558332 A
Abstract
The present invention provides a variety of fluid lens configurations that enable beam steering and focus adjustment. For example, according to one aspect of the present invention, a fluid lens is configured such that an optical signal may propagate from an input side of the lens to an output side of the lens along an axis of optical propagation extending through first and second lens surfaces defined by the immiscible fluids of the lens. Respective tunable lens surfaces are formed along the interfaces between the immiscible fluids and an external signal is capable of changing the shape of those surfaces. Because the two lens components forming the lens surfaces are laterally offset, the focal length and beam steering of the lens can be tuned by varying the shape of the surfaces. Additional embodiments are disclosed.
Claims(20)  translated from Chinese
1.一种包括第一和第二流体透镜组件的流体透镜,其特征在于: 所述第一流体透镜组件包括沿包含在所述透镜的流体容器内的第一和第二流体的界面形成的第一透镜表面; 所述第一和第二流体相对于彼此不混溶; 所述第二流体透镜组件包括沿所述流体容器内包含的第二和第三流体的界面形成的第二透镜表面; 所述第二和第三流体相对于彼此不混溶; 所述第一流体通过所述第二流体机械地耦合至所述第三流体; 所述第二流体的折射率与所述第一和第三流体的折射率显著不同; 所述流体透镜被配置成使光信号可沿穿过所述第一和第二透镜组件的所述第一和第二透镜表面延伸的光传播轴从所述透镜的输入侧向所述透镜的输出侧传播;以及所述流体透镜被配置成允许所述第一和所述第二透镜表面中的至少一个的改变。 1. A lens comprising a first fluid and the second fluid lens assembly, wherein: said first lens assembly comprises a fluid contained within the fluid container along the first and second lens formed at the interface of the fluid a first lens surface; said first and second fluid immiscible with respect to each other; said second lens assembly comprises a second fluid and a third lens surface formed at the interface of the second fluid along the inner fluid container contains ; said second and third fluid immiscible with respect to each other; the first fluid through the second fluid is mechanically coupled to the third fluid; the refractive index of the first and second fluid and a refractive index significantly different from the third fluid; the fluid lens is arranged movable along the optical signals passing through said first and second lens assembly of the first and second optical propagation axis extending from the lens surface the input side to the output side of said lens, said lens propagation; and the fluid lens is configured to allow at least one of the first change and the second lens surfaces.
2. 如权利要求1所述的流体透镜,其特征在于,所述第一和第二透镜表面沿垂直于所述光传播轴z的方向jc相对于彼此偏移。 2. The fluid lens according to claim 1, characterized in that said first and second lens surfaces perpendicular to the direction of light propagation axis z jc offset with respect to one another.
3. 如权利要求1所述的流体透镜,其特征在于:所述流体透镜还包括第三流体透镜组件,所述第三流体透镜组件包括沿包含在所述透镜的附加流体容器内的第一和第二流体的界面的第三透镜表面; 所述第三流体透镜组件的所述第一和第二流体相对于彼此不混溶; 所述第一和第二透镜表面沿垂直于所述光传播轴z的方向;c相对于彼此偏移;以及所述第一和第二透镜表面中的一个或两个沿垂直于所述方向a:和所述光传播轴z的方向_y相对于所述第三透镜表面偏移。 The first lens further comprises a third fluid fluid lens assembly, said lens assembly comprises a third fluid along the fluid contained in the container of the additional lens: The lens 3. The fluid according to claim 1, characterized in that and a third lens surface of the second fluid interface; said third fluid lens assembly of the first and second fluid immiscible with respect to each other; said first and second lens surfaces perpendicular to the light z-axis direction of propagation; c offset relative to each other; and the first and second lens surface one or two direction perpendicular to the direction a: z axis and the light propagation direction with respect _y The surface of the third lens offset.
4. 包括如权利要求1所述的流体透镜的光学系统,其特征在于,所述流体透镜被配置成通过在所述传播光中产生全局光束导向效应、改变所述流体透镜的焦距、或通过这两种方式引导在所述光学系统中传播的光。 4. The optical system comprises a fluid lens as claimed in claim 1, characterized in that the fluid lens is configured to generate the propagation of light through the global beam guiding effect, change the focal length of the fluid lens, or by These two ways of guiding light propagating in the optical system.
5. 如权利要求4所述的光学系统,其特征在于:所述光学系统包括半导体激光器,所述半导体激光器包括激光芯片、光波长转换装置、以及所述流体透镜;以及所述流体透镜被配置成通过在所述传播光中产生全局光束导向效应、改变所述流体透镜的焦距、或通过这两种方法引导从所述激光芯片的输出传播至所述光波长转换装置的输入的光。 The optical system according to claim 4, wherein: said optical system comprises a semiconductor laser, the semiconductor laser comprises a laser chip, the light wavelength conversion device, and the fluid lens; and the fluid lens is arranged By generating a global light beam propagation in the guide effect, change the focal length of the fluid lens, or to guide the propagation of the laser light output from the chip to the input of the optical wavelength conversion device passes through both methods.
6. 如权利要求1所述的流体透镜,其特征在于,所述透镜包括控制电极, 所述控制电极被配置成产生能够改变所述透镜表面中的至少一个的形状、取向、或形状和取向的至少一个电场。 6. The fluid lens according to claim 1, characterized in that said lens comprises a control electrode, the control electrode is configured to generate said lens capable of changing at least one surface of the shape, orientation, or shape and orientation at least one field.
7. 如权利要求1所述的流体透镜,其特征在于,所述透镜包括控制电极, 所述控制电极被配置成产生能够独立地改变所述第一和第二透镜表面的至少两个不同的电场。 7. The fluid lens according to claim 1, characterized in that said lens comprises a control electrode of said at least two different control electrodes can be independently configured to generate change the first and second surfaces of the lens electric field.
8. 如权利要求1所述的流体透镜,其特征在于,所述透镜包括控制电极, 所述控制电极被配置成产生能够通过独立地改变所述第一和第二透镜表面产生全局光束导向效应的至少两个不同的电场。 8. The fluid lens according to claim 1, characterized in that said lens comprises a control electrode, the electrode can be configured to generate a light beam generated by the global independently varying the first and second lens guiding effect of the control surface at least two different electric fields.
9. 如权利要求1所述的流体透镜,其特征在于,所述透镜包括控制电极, 所述控制电极被配置成产生能够通过独立地改变所述第一和第二透镜表面改变所述透镜的焦距的至少两个不同的电场。 9. The fluid lens according to claim 1, characterized in that said lens comprises a control electrode, the control electrode can be configured to generate by independently changing the first and second lens of the lens surface change at least two different focal length field.
10. 如权利要求l所述的流体透镜,其特征在于:所述透镜包括被配置成独立地产生至少两个不同的电场的第一组控制电极,各个所述电场能够改变所述第一透镜表面的至少一个方面;以及所述透镜包括被配置成独立地产生至少两个附加的不同电场的第二组控制电极,各个所述电场能够改变所述第二透镜表面的至少一个方面。 10. The fluid lens according to claim l, wherein: said lens comprises independently configured to generate a first set of at least two different electric field control electrodes, each of said electric field capable of changing the first lens and the lens is configured to include at least two additional independently generate different electric fields of the second set of control electrodes, each of said second electric field is capable of changing the surface of at least one aspect of the lens; at least one aspect of the surface.
11. 如权利要求1所述的流体透镜,其特征在于,所述流体容器限定了一个基本连续的容积。 11. A fluid lens according to claim 1, characterized in that said fluid container defining a substantially continuous volume.
12. 如权利要求1所述的流体透镜,其特征在于,所述第一流体通过所述第二流体机械地耦合至所述第三流体。 12. A fluid lens according to claim 1, characterized in that said first fluid through said second fluid is mechanically coupled to the third fluid.
13. 如权利要求1所述的流体透镜,其特征在于,所述第一流体通过所述第二流体和一种或多种附加流体机械地耦合至所述第三流体。 13. The fluid lens according to claim 1, characterized in that said first fluid and the second fluid through the one or more additional fluid machine coupled to the third fluid.
14. 如权利要求1所述的流体透镜,其特征在于,所述第一流体通过所述第二流体和设置在所述第二流体中的流体分隔物机械地耦合至所述第三流体。 14. A fluid lens according to claim 1, characterized in that said first fluid and the second fluid through the second fluid disposed in said fluid separator is mechanically coupled to the third fluid.
15. 如权利要求1所述的流体透镜,其特征在于,所述第一、第二、以及第三流体的所述不混溶性归因于所述流体的性质、设置在所述流体之间的薄膜的性质、或这些性质的组合。 15. The fluid lens according to claim 1, characterized in that said first, said second, and third fluid due to the immiscibility of the nature of the fluid, the fluid is disposed between the the nature of the film, or a combination of these properties.
16. 如权利要求1所述的流体透镜,其特征在于,所述第二流体的折射率与所述第一和第三流体各自的折射率显著不同。 16. The fluid lens according to claim 1, characterized in that said first and third fluid with a refractive index significantly different from the respective refractive index of the second fluid.
17. —种包括第一和第二流体透镜组件的流体透镜,其特征在于: 所述第一流体透镜组件包括沿所述第一透镜组件的第一流体容器所包含的多种不混溶流体的界面的第一透镜表面;所述第二流体透镜组件包括沿所述第二透镜组件的第二流体容器所包含的多种不混溶流体的界面的第二透镜表面;所述第一流体透镜的所述第一流体容器通过流体分隔物耦合至所述第二流体透镜的所述第二流体容器;所述第一透镜组件包含的所述不混溶流体各自的折射率显著不同; 所述第二透镜组件包含的所述不混溶流体各自的折射率显著不同; 所述流体透镜被配置以使光信号可沿穿过所述第一和第二透镜组件的所述第一和第二透镜表面延伸的光传播轴从所述透镜的输入侧向所述透镜的输出侧传播;所述第一流体容器的所述第一透镜表面和所述第二流体容器的所述第二透镜表面沿垂直于所述光传播轴Z的方向JC相对于彼此偏移;以及所述流体透镜被配置成允许所述第一和所述第二透镜表面中的至少一个的改变。 17. - Species fluid lens comprising a first lens assembly and the second fluid, wherein: said first fluid along said first lens assembly comprises a lens assembly comprising a first plurality of fluid container immiscible fluid said first fluid; a second lens surface more immiscible fluid interface a second lens assembly of the second fluid along the second fluid container comprises a lens assembly included; a first lens surface interface The first lens fluid container through a fluid separator coupled to the lens of the second fluid the second fluid container; said first lens assembly comprises a fluid immiscible significantly different from the respective refractive indices; the wherein said second lens assembly comprises a fluid immiscible significantly different from the respective refractive indices; the fluid lens is configured so that the optical signals along through the first and second lens assembly of the first and second output-side lens surface of the second optical propagation axis extending from the input side to the lens of the lens propagation; said first fluid container and said first surface of said second lens in the second lens fluid container a direction perpendicular to the surface of the optical propagation axis Z of JC offset relative to each other; and the fluid lens is configured to allow at least one of the first change and the second lens surfaces.
18. 如权利要求17所述的流体透镜,其特征在于,所述流体分隔物包括所述第一流体透镜组件的输出和所述第二流体透镜组件的输入处的单个光学界面。 18. The fluid lens according to claim 17, wherein said fluid separator at a single optical input interface comprises the output of the first fluid and the second lens assembly fluid lens assembly.
19. 如权利要求17所述的流体透镜,其特征在于,所述流体分隔物包括双光学界面,所述双光学界面包括所述第一流体透镜组件的输出窗口和所述第二流体透镜组件的输入窗口。 19. The fluid lens according to claim 17, wherein said fluid separator comprises a dual optical interface, said interface comprising dual optical lens assembly of the first fluid and the second fluid output window lens assembly The input window.
20. —种调节流体透镜的方法,其特征在于: 所述流体透镜包括第一和第二流体透镜组件;所述第一流体透镜组件包括沿包含在所述透镜的流体容器内的第一和第二流体的界面形成的第一透镜表面;所述第一和第二流体相对于彼此不混溶;所述第二流体透镜组件包括沿包含在所述流体容器内的第二和第三流体的界面形成的第二透镜表面;所述第二和第三流体相对于彼此不混溶;所述第一流体通过所述第二流体机械地耦合至所述第三流体;所述第二流体的折射率与所述第一和第三流体的折射率显著不同;所述流体透镜被配置以使光信号可沿穿过所述第一和第二透镜组件的所述第一和第二透镜表面延伸的光传播轴从所述透镜的输入侧向所述透镜的输出侧传播;以及从所述透镜输出的光信号的所述焦点或所述传播方向、或所述焦点和所述传播方向二者通过改变所述第一透镜表面、所述第二透镜表面、或既改变所述第一透镜表面又改变所述第二透镜表面来调节。 20. - that regulate the fluid lens, characterized in that: said lens comprises a first fluid and a second fluid lens assembly; said first lens assembly comprises a fluid contained within the fluid container along said first lens and a first lens surface formed at the interface of the second fluid; said first and second fluid immiscible with respect to each other; said second lens assembly comprises a fluid contained within the fluid along the second and third fluid container a second lens surface formed on the interface; said second and third fluid immiscible with respect to each other; the first fluid through the second fluid is mechanically coupled to the third fluid; said second fluid The refractive index of the first and third fluid significantly different; the fluid lens is configured so that the optical signals along through the first and second lens assembly of the first and second lens the output side of the propagating light propagation axis extending from the input side to the surface of the lens of the lens; or the propagation direction and the focal point of the lens from the light output signal, or the focus and the direction of propagation By changing both the first lens surface, the second lens surface, or both the first lens surface and the change of the second lens surface change adjusted.
Description  translated from Chinese

多流体透镜和包括多流体透镜的光学装置 More fluid lens and includes a plurality of fluid lens optical device

发明背景 Background of the Invention

本发明涉及可调流体透镜和包括可调流体透镜的光学装置。 The present invention relates to an adjustable fluid lens and includes an adjustable fluid lens optical devices. 发明内容 DISCLOSURE

根据本发明的一个实施例, 一种流体透镜被配置以使光信号可沿着穿过由透镜的第一、第二、以及第三基本不混溶流体限定的第一和第二透镜表面延伸的光传播轴从透镜的输入侧传播至透镜的输出侧。 According to one embodiment of the present invention, a fluid lens is configured such that an optical signal can pass through extending from a first, a second, and a third substantially immiscible fluids defining a first and a second surface of the lens along the lens The propagation of light propagation axis of the lens from the input side to the output side of the lens. 该透镜包括流体容器,该流体容器被配置以使第一不混溶流体通过第二不混溶流体机械地耦合至第三不混溶流体。 The lens includes a fluid container, the fluid container is configured such that a first immiscible fluid through the second immiscible fluid is mechanically coupled to the third immiscible fluid. 相应的透镜表面沿第一、第二、以及第三不混溶流体之间的界面形成。 The corresponding lens surface along the first, second interface, and a third immiscible fluid formed between.

根据本发明的另一实施例,第一和第二透镜表面沿垂直于透镜的光传播轴Z的方向JC相对于彼此偏移。 According to another embodiment of the present invention, the first and second lens surfaces along a direction perpendicular to the light propagation axis Z of the lens JC offset relative to one another. 第三透镜表面可沿两种叠加的不混溶流体的界面设置,并且第一和第二透镜表面中的一个或两个可沿垂直于方向^ 和光传播轴Z的方向相对于第三透镜表面偏移。 The third lens surface along two superimposed immiscible fluid interface settings, and the first and second lens surfaces of one or both movable in a direction perpendicular to the direction of light propagation ^ and Z axis with respect to the surface of the third lens offset.

根据本发明的又一实施例,提供了一种光学系统,它包括根据本发明的流体透镜。 According to yet another embodiment of the present invention, there is provided an optical system including a fluid lens of the present invention. 在该系统中流体透镜被配置成通过在传播光中产生全局光束导向效应、改变流体透镜的焦距或者通过这两种方式引导光在系统中传播。 In this system, the fluid lens is configured to generate the global propagation of light through the beam guiding effect, changing the focal length of the lens fluid or the propagation of light in the system through both boot.

因此,本发明的目的是提供针对可调流体透镜的改进设计、改进的半导体激光器、以及结合这些透镜的其它类型的光学一机械装置。 Accordingly, an object of the invention to provide for an adjustable fluid lens design improvements, improved semiconductor laser, as well as other types of mechanical means of a combination of these optical lenses. 例如,在 For example, in

诸如分布反馈(DFB)激光器或者分布布拉格反射镜(DBR)激光器之类的半导体激光器与诸如二次谐波产生(SHG)晶体之类的光波长转换装置组合以形成短波长源的情况下,利用光束导向会是有利的。 Under such as distributed feedback (DFB) laser or a distributed Bragg reflector (DBR) mirrors semiconductor laser such as a laser or the like second harmonic generation (SHG) crystal optical wavelength conversion device combination and the like to form a short-wavelength sources, the use of beam guide would be advantageous. 更具体地,通过将例如1060 nm的DBR或DFB激光器调节至将波长转换成530 nm即可见光谱的绿光部分的SHG晶体的光谱中心,可将SHG晶体配置成产生基波激光信号的较高次谐波。 More specifically, for example, by the 1060 nm DBR or DFB laser is adjusted to the wavelength of 530 nm can be converted into the visible spectrum of the green part of the spectrum of the center of the SHG crystal, SHG crystal may be a high signal to generate a fundamental laser configure harmonics. 根据本发明的可调透镜可被定位成将光从激光芯片引导至光波长转换装置。 It may be positioned to direct light from the laser chip to optical wavelength conversion device according to the present invention, an adjustable lens. 本发明的其它目的将根据在此具体化的本发明的描述变得显而易见。 Other objects of the present invention will become apparent from the description of this particular invention. 附图简述本发明的特定实施例的以下详细描述可在结合以下附图阅读时被最好地理解,附图中相同的结构使用相同的附图标号指示,且其中:图1是根据本发明的一个实施例的串联式流体透镜的示意图; 图2是根据本发明的处于偏置状态的图1的串联式流体透镜的示意图; 图3是根据本发明的处于另一偏置状态的图1的串联式流体透镜的示意图;图4是根据本发明的另一个实施例的串联式流体透镜的示意图;图5是根据本发明的另一个实施例的串联式流体透镜的示意图;以及图6A和6B示出包括三个透镜组件的本发明的实施例。 The following detailed description of specific embodiments of the present invention can BRIEF DESCRIPTION upon reading the following figures are best understood from the accompanying drawings the same structure using the same reference numerals, and wherein: Figure 1 is present Tandem schematic of one embodiment of a fluid lens of the present invention; Figure 2 is a schematic diagram of a fluid lens in tandem biased Figure 1 of the present invention; Figure 3 is biased in another state diagram of the present invention. Figure 4 is a schematic view of another fluid lens tandem embodiment of the present invention;; FIG. 5 is a schematic view of a tandem fluid lens of the present invention, another embodiment; schematic view of a tandem type fluid lens 6A and FIG. and 6B illustrate embodiments include three lens assembly of the present invention. 详细描述首先参考图1,示出了根据本发明的一个实施例的流体透镜10。 DETAILED DESCRIPTION Referring first to FIG. 1, there is shown a fluid lens 10 in accordance with one embodiment of the present invention. 一般而言,图1中所示的流体透镜IO包括第一和第二流体透镜组件12、 14。 Generally, the fluid lens IO shown in FIG. 1 comprises a first and a second fluid lens assembly 12, 14. 第一流体透镜组件12包括沿包含在透镜10的流体容器20内的第一和第二不混溶流体21、 22的界面的第一透镜表面13。 Lens assembly 12 comprises a first fluid contained in the fluid reservoir along a first lens surface of the lens 10 of the first and second interface immiscible fluid 21, 22, 20 is 13. 类似地,第二流体透镜组件14包括沿包含在流体容器20内的第二和第三不混溶流体22、 23的界面的第二透镜表面15。 Similarly, the second fluid along the lens assembly 14 comprises a fluid reservoir 20 contained within the second and third immiscible fluid 22, 23 of the second lens surface 15 interface. 为了限定和描述本发明,应当注意的是,在本文中引用的透镜组件"包括"透镜表面不应当解释为对表面的物理位置的限制。 In order to define and describe the present invention, it should be noted that the lens assembly referenced herein "comprising" lens surface should not be construed as limiting the physical position of the surface of. 相反, 无论该表面的位置在何处,它都应当被理解为透镜组件的一部分。 Instead, regardless of the position of the surface where it is to be understood as part of the lens assembly. 例如, 在图1和2中所示的本发明的实施例中,应当认为无论第一透镜表面13沿第三不混溶流体23的方向延伸多远,该表面都将是第一透镜组件的一部分。 For example, in the embodiment of the present invention shown in Figures 1 and 2, the surface should be considered whether the first lens 13 along the direction of the third immiscible fluid 23 extends far, this surface will be a first lens assembly part. 第二不混溶流体22的折射率与第一和第三不混溶流体21、 23各自的折射率不同,以确保第一和第二透镜表面13、 15向透镜10中引入合乎需要的光学效应。 Immiscible with the first second and third refractive immiscible fluids 21, 23 each of different refractive index, to ensure that the first and second lens surfaces 13, 15 of the lens 10 is introduced to the desirable optical fluid 22 effect. 具体地,在光信号沿从穿过第一和第二透镜表面13、 15延伸的光传播轴从透镜10的输入侧传播至透镜10的输出侧的情况下,相应的折射率应当足够不同以在各个透镜表面处在信号中引入光学上的显著变化。 In particular, the optical signal from passing through the first lower edge and the case of the second lens surface 13, the light propagation axis 15 extending from the input side of the lens 10 propagates to the output side of the lens 10, corresponding to the refractive index should be sufficiently different introducing significant change in the optical lens surface on at all in the signal. 例如而不是为了限制,在包括激光芯片、波长转换装置、和根据本发明的流体透镜10的半导体激光器的背景下,流体透镜10可沿激光芯片的光输出与PPLN波长转换晶体的输入之间的光路径定位。 For example and not limitation, including between the laser chip, a wavelength conversion device, and a lower fluid lens according to the present invention, a semiconductor laser 10 in the background, the fluid lens may be the optical output of the laser chip 10 along with the input wavelength conversion crystal of PPLN optical path positioning. 优选设置一对准直透镜,且流体透镜IO在准直透镜之间的光路径的已准直部分中定位。 Preferably provided with a collimating lens, and a fluid lens positioned IO collimated portion of the optical path between the collimator lens in. 流体透镜IO可按照本文中所描述的方式调节,以通过将传播光相对于PPLN 晶体的输入表面重新对准、通过调节PPLN晶体的输入表面处的传播光的焦点或同时采取这两种方法来改善激光输出与PPLN晶体之间的耦合效率。 IO fluid lens in accordance with the manner described herein regulated by the propagation light with respect to the input surface realign PPLN crystals, the propagation of light through the focal point of the input surface of the crystal or PPLN adjusted while taking these two methods improve the coupling efficiency of the laser output between the crystal and PPLN. 虽然引入光信号中的变化可以是静态的,但本发明的多个实施例尤其适合于通过改变光信号被重定向的角度在光学系统中产生光束导向效果。 Although the introduction of changes in the optical signal may be static, but a plurality of embodiments of the present invention is especially suitable for the optical signal by varying the angle of the light beam guide is redirected to produce effects in the optical system. 此外, 本发明的多个实施例尤其适合于通过改变透镜10的焦距被改变的程度提供焦距的变化。 Further, a plurality of embodiments of the present invention is particularly suitable for providing the degree of change in the focal length by changing the focus lens 10 is changed. 具体地,参考图l作为示例,第一和第三不混溶流体21、 23可被提供为电响应流体,且透镜10可包括控制电极30、 32、 34,控制电极30、 32、 34被配置成产生能够改变透镜表面13、 15中的一个或两个的形状和/或取向的相应的电场。 In particular, with reference to FIG. L as an example, the first and third immiscible fluids 21, 23 may be provided as an electrical response of fluid, and the lens 10 may include a control electrode 30, 32, 34, the control electrode 30, 32, 34 are configured to generate an electric field can be changed corresponding to the lens surfaces 13, 15 of one or both of the shape and / or orientation. 如图1所示,控制电极30、 32、 34可被配置成至少部分地界定流体容器20,其中电极30和34包括部分锥形的壁部分。 1, the control electrode 30, 32, 34 may be configured to at least partially define the fluid reservoir 20, in which the electrodes 30 and 34 includes a tapered portion of the wall portion. 电响应透镜流体与容器的锥形壁接合的角度和流体与容器壁接合的点因变于施加到控制电极的控制电压。 Point of view and the point of the fluid and the electrical response of the vessel wall engaging lens fluid container tapered wall engaging vary as applied to the control electrode of the control voltage. 以此方式,相应的透镜表面的形状和取向可因变于施加到控制电极的电压被控制。 In this manner, the shape and orientation of the corresponding surface of the lens may be due to variations in the voltage applied to the control electrode is controlled. 例如而非为了限制,在其中第一和第二透镜组件12、 14的电极和几何形状是旋转对称的特定情况下,电极电压的变化将改变第一和第二透镜表面13、 15的曲率半径。 For example, and not limitation, in which the first and second lens assembly 12, and the geometry of the electrode 14 is rotationally symmetrical under certain circumstances, the electrode 13 will change the voltage variation, the radius of curvature of the first surface 15 and a second lens . 曲率的这个变化改变第一和第二透镜组件12和14 的焦距。 This change of curvature change the focal length of the first and second lens assemblies 12 and 14. 如图1所示,如果透镜横向偏移距离",透镜组件12、 14的曲率半径的变化可被转换成传播的光信号的传播方向选择性调节和透镜10的焦距调节。通过向透镜组件12和14施加不同的信号可独立地调节光束焦点和光束导向。例如,以下方程示出一光学构造中的PPLN波长转换晶体的输入处的光束导向和光斑的焦点调节,该光学构造包括沿一光学路径以此8排列的激光二极管、第一准直透镜Ll、包括第一和第二透镜组件12、 14的流体透镜10、第二准直透镜L2、以及PPLN晶体:其中巧是PPLN晶体的输入处的光斑的横向平移,A是PPLN晶体的输入处的光斑的焦点平移,,和《是第一和第二流体透镜组件12、 14各自的焦距,而/"是第二准直透镜L2的焦距。 1, if the lens is laterally offset distance ", the lens assembly 12, the change of radius of curvature 14 may be converted into the propagation direction of propagation of the optical signal and selectively adjusting the focal length of lens 10 is adjusted by the lens assembly 12 and 14 applying different signals can independently adjust the beam focus and beam orientation. For example, the following equation is shown at the input of an optical configuration of the wavelength conversion crystal PPLN beam guide and spot focus adjustment, the optical structure includes along an optical path as the laser diode array 8, a first collimating lens Ll, comprising a first and a second lens assembly 12, 14 of the fluid lens 10, a second collimating lens L2, and a PPLN crystal: wherein Qiao input PPLN crystals lateral translation at spot, A is the spot at the focal panning input PPLN crystals ,, and "the first and second fluid lens assembly 12, 14 are each focal length, and /" is the second collimating lens L2 focus. 因此,通过在不改变、/乂的和值的情况下改变,和《可调节光斑的横向位置。 Therefore, without change, change case / qe and values, and "horizontal position can be adjusted spot. 反之,通过调节乂和/2同时保持差值、/乂//2,恒定可改变焦点。 On the other hand, by adjusting the qe and / 2 while maintaining the difference / qe // 2, a constant focus can be changed. 图2示出透镜表面13、 15的形状的构想改变的示例。 Figure 2 shows the lens surface 13, an example of the idea of the shape of the 15 changes. 在示图中,控制电极30、 32、 34是环形对称的,而且可被施加会产生具有改变的曲率的透镜表面13'、 15'的电位。 In the diagram, the control electrode 30, 32, 34 is symmetrical ring, and may be applied 13 ', 15' will have the potential of having a lens surface curvature change. 图3例示出第一和第二透镜组件12、 14的透镜表面的取向的构想改变。 The first and second components of Figure 3 illustrates a lens 12, the lens surface 14 of the idea of changing the orientation. 在示图中,控制电极30、 32、 34不是环形对称的, 而且被施加会产生具有改变的取向的透镜表面13'、 15'的电位。 In the diagram, the control electrode 30, 32, 34 is not symmetrical ring, and is applied to produce a lens alignment with altered surface 13 ', 15' potentials. 构想可采用本发明的概念给予透镜表面取向和形状的实际无限制的集合。 The conceptualization of the present invention may be administered lens surface orientation and shape of the actual collection of unlimited. 例如,构想各个控制电极30、 32、 34可被划分成包括两个或多个单独可控的分支电极或电极部分。 For example, each of the control electrode 30 idea, 32, 34 may be divided into two or more branches of individually controllable electrode or electrode portion. 更具体地,虽然控制电极30和34可包括相应的连续锥形电极且控制电极32可包括连续环形电极,但构想各个锥形或环形电极可沿电极的弧形分成若干分支电极以提供透镜表面13、 15的增强控制。 More specifically, although the control electrodes 30 and 34 may comprise respective conical continuous electrode and the control electrode 32 may comprise a continuous annular electrode, but the idea of the respective conical or annular electrodes may be divided into several branches curved electrode along the electrode surface of the lens to provide 13, enhanced control 15. 在美国专利No. 6,538,823中说明了在可调流体透镜中使用的电极组件的一些示例。 Some examples are described electrode assembly for use in an adjustable fluid lens in the U.S. Patent No. 6,538,823. 该专利的仅对便于理解可调流体透镜中的电极可用来改变流体透镜表面的曲率的方式有必要的那些部分通过引用结合于此。 This patent is only to facilitate understanding of the adjustable fluid lens electrode can be used to change the curvature of the lens surface of the fluid way those parts necessary incorporated herein by reference. 为了描述和定义本发明,注意"电学响应"的流体可以是导电流体、有限导电率的有极性流体、或者可被安排成以在此描述的方式对其上的电场或磁场的施加作出物理响应的任何流体。 In order to describe and define the present invention, attention "electrical response" fluid may be a conductive fluid, finite conductivity polar fluid, or may be arranged in the manner described herein electric or magnetic field is applied thereto made on physical any fluid response. 还构想仅提供第二不混溶流体22 作为电响应流体就足够了,因为第二不混溶流体22的形状和取向将由于第二不混溶流体22与其它两种不混溶流体之间的机械耦合而影响第一和第三不混溶流体21、 23的形状和取向。 Is also contemplated to provide only the second immiscible fluid 22 as the electrical response of fluid is sufficient, because the shape and orientation of the second immiscible fluid 22 will be due to the second immiscible fluid 22 and the other between two immiscible fluids The mechanical coupling affect the first and third immiscible fluid 21, 23 of the shape and orientation. 此外,还构想设置在透镜中的全部不混9溶流体21、 22、 23可被选择成电响应的。 In addition, all arranged in vision lenses 9 solvent immiscible fluid 21, 22, 23 may be selected to electrical response. 控制其中由控制电极产生的电场可用来改变透透镜表面13、 15的形状和取向的方式的具体方式在本发明的范围以外,并且该方式可从该问题的多种容易得到的示教中了解。 Control in which the electric field generated by the control electrode can be used to change through the lens surfaces 13, 15 of the specific way shape and orientation of the way outside the scope of the invention, and the manner taught to learn from a variety of readily available in this issue . 例如且不作为限制,美国专利No. 6,538,823、 6,778,328和6,936,809提供了对该问题的具体指导。 For example and without limitation, US Patent No. 6,538,823, 6,778,328 and 6,936,809 provides specific guidance on the issue. 这些专利的仅对促进理解电场可用来改变凸透镜表面的曲率的方式有必要的那些部分通过引用结合于此。 These patents are only used to facilitate understanding of the field curvature of convex lens surface change the way those parts necessary incorporated herein by reference. 在本发明的实施中,构想将通常优选通过确保提供合适的控制电路和相应的独立可控电极30、 32、 34以允许产生能够独立地改变第一和第二透镜表面13、 15的各自形状的至少两个不同的电场以最大化操作灵活性。 In an embodiment of the present invention, the idea will usually preferred by ensuring appropriate control circuitry and the corresponding independently controllable electrodes 30, 32, 34 to allow the produce can be changed independently of each shape of the first and second lens surfaces 13, 15 at least two different electric fields to maximize operational flexibility. 为此,在图1和其它地方处将透镜10示为包括在控制电极30、 32、 34之间定位的相应的电绝缘体36。 For this reason, in FIG. 1 and elsewhere at the lens 10 is shown as including a control electrode 30, positioned between the corresponding electrical 32, 34 of the insulator 36. 例如图1所示,电绝缘体36可界定流体容器20。 For example, as shown in FIG. 1, the electrical insulator 36 may define a fluid reservoir 20. 本发明的一个重要方面参考图6A和6B示出,其中第一和第二透镜组件12、 14各自的位置参考正交XYZ坐标系示出。 An important aspect of the present invention with reference to FIG. 6A and 6B show, in which the first and second lens assembly 12, 14 each position reference XYZ orthogonal coordinate system is shown. 如图6A所示,可定位第一和第二透镜组件并控制控制电极30、 32、 34以使各个组件的相应透镜表面13、 15相对于彼此沿x方向偏移,x方向垂直于代表光传播轴的一般方向的z方向。 6A, may be positioned first and second control electrode and controlling the lens assembly 30, 32, 34 so that the respective lens surface of each component 13, 15 are offset relative to each other along the x direction, x direction is perpendicular to the representative light z direction of the general direction of the propagation axis. 图6B示意性地示出XY平面中的相应的透镜组件12、 14 的偏移关系。 Figure 6B schematically shows the XY plane corresponding offset relationship between the lens assembly 12, 14. 此偏移关系允许用户通过相对低复杂度的控制电极配置在x 方向上获得显著的光束导向。 This offset relationship allows users to gain significant beam guide in the x direction by a relatively low complexity of the control electrode configuration. 图6A和6B还示出第三流体透镜组件16,其包括沿透镜10的附加的流体容器内包含的第一和第二不混溶流体21、 22的界面的第三透镜表面17。 6A and 6B also illustrates the third fluid lens assembly 16, which includes a third lens surface of the lens attached along the inner fluid container 10 comprises a first interface and a second immiscible fluid 21, 22, 17. 第一透镜组件12的第一透镜表面13相对于第三透镜组件16的第三透镜表面17沿垂直于x方向的y方向偏移。 A first surface of the first lens 13 of the lens assembly 12 with respect to the third shift of the third lens 16 is a lens assembly 17 along the surface perpendicular to the x direction, y direction. 因此,第三透镜表面17的形状和/或取向的改变将允许用户通过相对低复杂度的控制电极配置实现y方向上的显著的光束导向。 Therefore, the shape of the third lens surface 17 changes and / or orientation will allow users to control electrode relatively low complexity configurations achieve significant beam guide y direction. 图6A和6B中示出的偏移透镜组件的所得组合将共同允许整个XY平面上的方便的光束导向,同时保持改变透镜10的焦点的上述能力。 The resulting composition 6A and 6B is shown offset lens assembly will collectively allow the beam guide handy entire XY plane, while maintaining the focus lens 10 to change the above capacity. 关于本申请的图l-6中所示的流体容器,构想透镜表面界面壁40可被配置成锥形或圆柱形壁的相应的内周边。 About this application Fig l-6 fluid container shown, it is contemplated lens surface interface wall 40 can be configured to taper or cylindrical inner peripheral wall of the corresponding. 然而,还可构想多种常规和有待开发的容器构造将适合用于本发明的透镜组件。 However, also contemplated a variety of conventional container construction and yet to be developed will be suitable for use in the lens assembly of the present invention. 在所示实施例中,各个流体容器20至少部分地受输入窗口24和输出窗口26限制,它们中的每一个可沿透镜10的光传播轴定位。 In the illustrated embodiment, each fluid reservoir 20 is at least partially receiving the input window 24 and output window 26 limits, each of them can be positioned along the optical propagation axis of the lens 10. 容器20还受与透镜表面13、 15、 17接合的壁40限制。 Container 20 is also affected by the surface of the lens 13, 15, 17 engaging the wall 40 limit. 这些壁一般沿光传播轴延伸,且平行于光传播轴或向内或向外成锥形,即相对于光传播轴倾斜。 These walls extending generally along the optical propagation axis, and is parallel to the optical propagation axis or taper outwardly or inwardly, i.e., inclined relative to the optical propagation axis. 此外,构想这些壁可包括相对简单的线性壁或更复杂的弧形壁。 In addition, it is contemplated these walls may include relatively simple linear wall or a more complex curved wall. 还构想这些壁40的相应部分可包括不同形状和取向的不同壁部分的组合。 It is further contemplated these respective portions of the walls 40 may include a combination of different wall portions of different shapes and orientations. 例如,注意改换的容器剖面可获得对控制电压中的变化更线性的响应, 或者在由透镜调节的光学参数方面更佳或变差。 For example, note the change in vessel cross-section available to the control voltage changes in a more linear response, or better or worse by the lens in the optical parameters adjusted terms. 在其它情况下,可优选实现对控制电压中的变化的非线性或指数响应。 In other cases it may be preferable to achieve a change in control voltage non-linear or exponential response. 所构想的剖面包括但不限于: 上述线性锥形剖面、双曲线锥形剖面、抛物线锥形剖面、圆柱剖面、矩形剖面、或其它线性或非线性剖面并包括它们的组合。 Sectional contemplated include, but are not limited to: the above-mentioned linear taper profile, tapered section hyperbolic, parabolic tapered section, cylindrical cross-section, a rectangular cross section, or other linear or non-linear cross section and includes a combination thereof. 虽然图1-3示出了具有基本连续容积的流体容器,其中第二不混溶流体22机械地将第一不混溶流体21耦合至第三不混溶流体23,但可构想第一不混溶流体21可通过第二不混溶流体22和一个或多个另外的不混溶流体机械地耦合至第三不混溶流体23。 Although Figure 1-3 shows a container having a substantially continuous fluid volume, wherein the second immiscible fluid 22 is mechanically first immiscible fluid 21 is coupled to the third immiscible fluid 23, but not the first conceived immiscible fluid 21 may be a second immiscible fluid 22 and one or more additional immiscible fluid is mechanically coupled to the third immiscible fluid 23 through. 此外,如图4所示,相对刚性部分50 可在第二不混溶流体中设置以隔开流体、并帮助将相应的流体透镜表面13、 15的运动彼此隔离、稳定透镜10的结构、使透镜10的组装容易等等。 In addition, 4, a relatively rigid portion 50 may be disposed in a second immiscible fluid to separate the fluid and help the fluid movement of the respective lens surfaces 13, 15 are isolated from each other, structural stability of the lens 10, so that lens 10 is easy to assemble and so on. 刚性部分50可设置为例如薄膜之类的相对薄层、或例如透明窗之类的相对厚的组件。 Rigid portion 50 may be provided, for example, a relatively thin film or the like, or a component such as a relatively thick transparent window or the like. 虽然第一、第二、以及第三不混溶流体21、 22、 23的特定成分超出本发明的范围,但应当注意这些流体的不可混溶性通常归因于这些流体自身的性质。 Although the first, second, and third immiscible fluid 21, the specific component 22, 23 is beyond the scope of the present invention, it should be noted that these non-miscible fluids are usually attributed to the nature of the fluid itself. 优选这些流体包括具有相似密度的透明液体。 The fluid preferably comprises a transparent liquid having a similar density. 透镜内的毗邻流体通常具有不同的折射率且可具有不同极性。 Adjacent to the fluid lens generally has a different refractive index and may have a different polarity. 例如而非作为限制,电响应油可用作第一和第三不可混溶流体,而水基流体可被提供作为第二不可混溶流体。 For example and not by way of limitation, the electrical response can be used as the first and third oil immiscible fluids, and water-based fluids may be provided as a second immiscible fluid. 美国专利No. 4,477,158和美国专利公开No. 2006/0152814提供涉及在透镜中使用不混溶流体的另外示教。 U.S. Patent No. 4,477,158 and U.S. Patent Publication No. 2006/0152814 relates to the use of immiscible fluids to provide additional teachings in the lens. 还构想流体的不混溶性可通过定位在流体之间的柔性膜被增强,或仅仅由该柔性膜引起。 Also contemplated immiscible fluid can be enhanced by positioning the fluid between the flexible film, or simply caused by the flexible film. 此外,注意根据本11发明的不混溶流体不需要对透镜10内的所有流体都不混溶。 In addition, attention is not miscible 11 according to the present invention, the immiscible fluid 10 do not need all of the fluid within the lens. 相反,流体仅需对毗邻的流体不混溶。 Instead, only the adjoining fluid immiscible fluids. 从第一不混溶流体21的角度看,图1-4中所示的透镜表面13可称为凸面的。 From the perspective of the first immiscible fluid 21, the lens surface 13 as shown in Figure 1-4 it can be called convex. 同样,从第三不混溶流体23的角度看,图l-4中所示的透镜表面15可称为凸面的。 Likewise, from the perspective of a third immiscible fluid 23, the surface of the lens Figure l-4 as shown in a convex surface 15 may be referred to. 反之,图5中所示的透镜表面13、 15可称为凹面的。 On the other hand, the surface of the lens 13 shown in FIG. 5, the concave surface 15 can be called. 因此,本发明的各实施例构想凸面或凹面的透镜表面。 Therefore, the lens surface convex or concave Example conceived various embodiments of the present invention. 另外,虽然未示出, 但构想本发明的各实施例中的透镜表面13、 15中的一个是凹面的,而另一个是凸面的。 In addition, although not shown, each example embodiment of the inventive idea lens surface 13, 15 a is concave, and the other is convex. 不混溶流体21、 22、 23的性质、相关联的透镜表面界面壁40 的性质、以及在控制电极30、 32、 34处产生的电势的本质将协同确定在本发明中具体化的特定透镜表面形状。 Immiscible fluids 21, 22 properties, 23 of the lens surface and interface properties of the associated wall 40, and the specific lens control electrodes 30, 32, the nature of potential synergies generated 34 will determine the present invention is embodied in the the surface shape. 虽然图1-5中示出的透镜表面从穿过且平行于透镜10的光传播轴截取的截面看具有基本均匀的环形表面,但应当注意实际上这些透镜表面通常会不同于所示的均匀圆弧。 Although Figures 1-5 shown from the lens surface through the optical propagation axis and parallel to the cross-section taken with the lens 10 viewed substantially uniform annular surface, it should be noted in fact be different from those shown in the lens surface generally uniformly arc. 例如,凸透镜表面可更接近地近似椭圆或其他非圆形的圆弧,并且可在它们相应的横截面中包括平面或近似平面的表面部分。 For example, a convex lens surface may more closely approximate elliptical or other non-circular arc, and may include a planar or nearly planar surface portions in their respective cross section. 此外,构想透镜流体可形成平坦或近似平坦的透镜表面。 In addition, it is contemplated lens fluid may be formed flat or nearly flat surface of the lens. 本发明的概念已参考电响应透镜流体的使用和相应的控制电极在以上进行了说明。 The concept of the present invention with reference to the electrical response using a lens fluid and the corresponding control electrodes has been described above. 然而,还构想第一和第二透镜流体可包括液压响应的压敏透镜流体,其中凸透镜表面的曲率可通过控制向相应流体储存器的流体源来控制。 However, also contemplated that the first and second lens fluid may comprise a pressure-sensitive response of the hydraulic fluid lens, the curvature of the convex lens surface which can be controlled corresponding to the fluid source via a fluid reservoir control. 第一和第二流体源可以是不同的流体源或共用的流体源。 The first and second fluid source may be a fluid source or different fluid sources shared. 在美国专利No. 5,438,486和6,188,526中更具体地示教了在液体透镜内的压敏透镜流体的使用。 In U.S. Patent No. 5,438,486 and 6,188,526 teach more particularly in the liquid lens using a pressure-sensitive lens fluid. 这些专利的仅对支持理解其中压敏流体透镜可被构造的本质有必要的那些部分通过引用结合于此。 Those portions of these patents are supported only understand the nature of the pressure sensitive fluid lens may be configured to have the necessary incorporated herein by reference. 在根据本发明的流体透镜被配置成引导在光学系统中传播的光的情况下,构想这些透镜还可包括准直光学装置,这些准直光学装置被配置成使从例如激光芯片之类的输入光学装置被引导至例如SHG晶体之类的输出光学装置的光基本被准直。 In the case of being configured to guide light propagating in the optical system according to the present invention, the fluid lens, it is contemplated these may also include a collimating lens optical apparatus, the optical collimating means is configured so that the input from e.g. a laser chip or the like The optical device is guided to the light output of the optical means e.g. SHG crystal or the like is substantially collimated. 另外,可引入准直光学装置以减轻否则将落在可调节透镜上的光功率需求。 In addition, the introduction of collimation optics in order to reduce or adjust the optical power demand falls on the lens. 具体地,准直光学装置可被配置成主要起系统的第一阶光学组件的作用,而可调节透镜可被设计成主要起二阶校正系统的作用。 Specifically, the collimation optics can be configured to act first order optical components mainly from the system, and can adjust the lens can be designed mainly from the second-order correction system role. 根据本发明的可调节流体透镜在小规模和大规模光学一机械装置中具有特定用途,因为通常在这样的装置中难以确保光学元件的适当的机械对准。 According to the present invention, an adjustable fluid lens having a specific use in a small-scale and large-scale optical mechanical devices, because such devices typically difficult to ensure a proper mechanical alignment of the optical element. 例如,在包括激光芯片和二次谐波产生(SHG)波导晶体光波长转换装置的半导体激光器的环境中,本发明已认识到经常有必要以亚微米公差对准光学组件。 For example, a laser chip including a semiconductor laser and a second harmonic generation environment (SHG) crystal waveguide of the optical wavelength conversion device, the present invention has recognized that it is often necessary to align the optical components submicron tolerances. 为了说明而不是限制,注意通过本发明构想的另外的光学一机械装置包括二次谐波发生激光器装置、泵浦激光器装置、以及其中单或多模光信号在光波导、光纤、光晶体、或各种有源或无源光学元件的组合之间传输的其他光学装置。 Purposes of illustration and not limitation, an alert by another optical machine vision apparatus of the present invention comprises a second harmonic generation laser apparatus, pump laser means, and wherein the single or multi-mode optical signal in an optical waveguide, an optical fiber, optical crystal, or Other transmission between the active optical device or a combination of a variety of passive optical components. 为了描述和定义本发明,注意在本文中采用术语"基本上"来表示可归因于任何数量的比较、值、测量、或其它表示的固有不确定程度。 In order to describe and define the present invention, note the use of the terms herein, "substantially" to represent any number attributed to compare, value, measurement, or other representation inherent degree of uncertainty. 还在此采用术语"基本上"以表示数量表征可不同于规定参考值而不在此问题上导致本主题的基本功能改变的程度。 This also uses the term "substantially" to indicate a predetermined number of characterization may differ from the reference value without resulting in the degree of change in the basic function of the subject matter on this issue. 在此还釆用术语"基本上"以表示数量表征必须不同于规定参考值以在此问题上获得主题的所列出的功能的最小程度。 Here also preclude the use of the term "substantially" to indicate a predetermined number of characterization must be different from the reference value in order to get this issue on the theme functions listed minimum. 已详细地并引用其具体实施例描述了本发明,显然在不背离所附权利要求书中所限定的本发明的范围的情况下多种修改和变化是可能的。 In detail and by reference to the specific embodiments described in the present invention, it is clear in the appended claims without departing from the numerous modifications and variations of the scope of the book, as defined in the present invention are possible. 更具体地,虽然本发明的某些方面在此可被鉴别为优选的或特别有优势的,但应构想到本发明不一定限于本发明的这些方面。 More specifically, although some aspects of the invention herein can be identified as preferred or particularly advantageous, but it should be contemplated that the present invention is not necessarily limited to these aspects of the invention.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
CN103443665A *15 Mar 201211 Dec 2013庄臣及庄臣视力保护公司Lens with multi-oncave meniscus wall
CN103443665B *15 Mar 201227 Apr 2016庄臣及庄臣视力保护公司具有多凹面弯月壁的透镜
CN103792665A *26 Jan 201414 May 2014浙江工业大学Beam shaping device based on microfluidic optical technology
Classifications
International ClassificationG02B3/14, G02B26/02
Cooperative ClassificationG02B3/14, G02B26/005
European ClassificationG02B26/00L1, G02B3/14
Legal Events
DateCodeEventDescription
14 Oct 2009C06Publication
30 Dec 2009C10Request of examination as to substance
9 Mar 2011C14Granted
2 Jan 2013C17Cessation of patent right