CN101146595B - 用于在印刷电路板上操作液滴的装置和方法 - Google Patents

用于在印刷电路板上操作液滴的装置和方法 Download PDF

Info

Publication number
CN101146595B
CN101146595B CN2006800032222A CN200680003222A CN101146595B CN 101146595 B CN101146595 B CN 101146595B CN 2006800032222 A CN2006800032222 A CN 2006800032222A CN 200680003222 A CN200680003222 A CN 200680003222A CN 101146595 B CN101146595 B CN 101146595B
Authority
CN
China
Prior art keywords
electrode
drop
printed circuit
circuit board
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800032222A
Other languages
English (en)
Other versions
CN101146595A (zh
Inventor
V·K·帕穆拉
M·G·波拉克
R·B·费尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duke University
Original Assignee
Duke University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duke University filed Critical Duke University
Publication of CN101146595A publication Critical patent/CN101146595A/zh
Application granted granted Critical
Publication of CN101146595B publication Critical patent/CN101146595B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44769Continuous electrophoresis, i.e. the sample being continuously introduced, e.g. free flow electrophoresis [FFE]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/302Micromixers the materials to be mixed flowing in the form of droplets
    • B01F33/3021Micromixers the materials to be mixed flowing in the form of droplets the components to be mixed being combined in a single independent droplet, e.g. these droplets being divided by a non-miscible fluid or consisting of independent droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3031Micromixers using electro-hydrodynamic [EHD] or electro-kinetic [EKI] phenomena to mix or move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00119Arrangement of basic structures like cavities or channels, e.g. suitable for microfluidic systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6846Common amplification features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0694Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means or flow sources of very small size, e.g. microfluidics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0663Whole sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0424Dielectrophoretic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Abstract

公开了用于在印刷电路板(PCB)上操作液滴的装置和方法。通过对定义在PCB上的电极应用电势而在印刷电路板基板的表面上驱动液滴。还公开了使用阻焊掩模作为用于液滴操作也用于使其它传统PCB层和基于液滴的微流体系统适用的材料的技术的电极绝缘体。

Description

用于在印刷电路板上操作液滴的装置和方法
相关申请 
本发明与2002年9月24日提交的序列号为No.10/253,342的美国专利申请和2005年1月28日提交的序列号为No.60/648,051的美国临时专利申请相关;其公开内容在此全部并入作为参考。 
发明领域
本发明公开的主题一般地涉及用于在印刷电路板(PCB)基板上执行对液滴的微操作的装置和方法。特别地,本发明公开的主题涉及基于传统PCB技术制造和操作基于液滴的微流体系统的装置和方法,在传统PCB技术中通过对定义在PCB上的电极应用电势而在PCB表面上驱动液滴。本发明公开的主题还描述了用于液滴操作的作为电极绝缘体的焊接掩模的使用,以及使其它传统PCB层和材料适用于基于液滴的微流体的技术。 
背景技术
微流体学是涉及亚微升流体研究的快速发展的领域。微流体器件逐渐被生物、化学、医学、环境监控、药物发明和消费电子产品等许多领域所应用和接受。传统器件的微型化,特别是分析器件的微型化,预计可引起许多效益,包括试剂和样品的缩减的消耗(和成本)、较高的生产量和较好的自动控制、较快的分析时间,以及更可靠、廉价和轻便的仪器设备。当更多的性能被嵌入这些器件时,全集成微全分析系统(μTAS)或芯片实验室(labs-on-a-chip)将变成现实,并且它们将变得日益重要。 
芯片实验室是一个新兴范例,其目的是将流体处理(fluid-handling)微型化并集成到芯片上。芯片实验室应当能够分配流体、传输流体、混合流体、培养(inculation)流体、探测/分  离流体和处理废液,以使其成为真正的自足式装置。微流体芯片实验室系统可大体分为连续流系统和离散流系统。连续流系统是自我描述性的,而在离散流系统内,流体被离散化为液滴。连续流系统的普遍局限是流体传输被物理地限制于固定通道,而基于液滴(或离散流)系统可被限制于物理通道或可在平坦无通道系统上操作。一般用于连续流系统的传输装置为利用外部泵压力驱动或利用高电压电动驱动。连续流系统可带来复杂沟道效应,并需要外部阀形式或电源形式的大型支持设备。在基于通道的系统的另一个方法中,离心力驱使流体在通道内单向流动。连续流微流体范例在通用性方面具有局限性,这使得其很难实现功能的高度集成和高度控制。 
离散流或基于液滴的微流体系统一直在稳定发展以实现芯片实验室概念的希望,所述概念即操作所有分析步骤,包括取样、样品制备、包括传输、混合和培养的样品加工、探测和废液处理。这些步骤被设计为在芯片上执行,而无需明显的芯片外支持系统。最近,开发了几种离散流方法,其用于基于多层软光刻、水力多相流、连续电润湿(electrowetting)、电介质上电润湿(electrowetting-on-dielectric)(EWOD)、双向电泳、静电和表面声波而操作液滴。上述技术中的某些技术在物理限制的通道内操作液滴或未蒸发的燃料液滴(slugs),同时其它技术允许在无任何物理限制的通道的平坦表面上操作液滴。因流体被分散,并且经过可编程操作,所以该无通道、基于液滴的方法被称为“数字微流控”。 
基于液滴的方案(protocols)与一般还在离散量的流体上执行的实验室规模生物化学方案非常相似。因此,所制定的方案可容易地适用于数字微流体形式。数字微流体系统的一些显著特征包括:可重构性(通过软件控制面板选择液滴操作和路径,以使得用户能够即时创造微流体操作的任何组合);软件可编程性还使得设计灵活,其中为了不同应用,可对一类微流体处理芯片设计和程序重调;因为每一微流体操作可在计算机的直接控制下执行以允许最大操作灵活性,所以可执行条件执行步骤(conditinal execution steps);因仅存在虚拟意义上的通道,所以可通过软件即时重新配置多向液滴传输;小  的液滴体积(<1μL);不使用外部泵或外部阀的完整电子操作;多个液滴的同时操作和独立操作;以及无通道操作(其中不需要起动(priming))。 
许多现有芯片实验室技术(包括连续流和离散流装置)较不灵活,并且被设计成仅执行单个测定或非常相似的一小组测定。由于现有微流体芯片的固定布局,每个应用都需要新芯片设计,这使得开发新应用的费用高昂。此外,使用来自半导体集成电路制造的昂贵的微细加工技术制造许多个这样的器件。因此,由于用于每种特定应用的新器件的开发需要成本和努力,用于微流体器件的应用的发展较慢。虽然在大规模生产时批量制造使微细加工的器件价格低廉,但由于与标准半导体微细加工技术有关的过高成本和微细加工长周转时间,使得新设备的开发可能过于昂贵且费时。为了扩大应用范围和微流体在医学、药品发明、环境和食品监控和包括消费电子产品的其它领域内的影响,对于提供更多可重构、灵活的集成电路器件的微流体方法以及用于廉价、快速地开发和制造这些芯片的技术,长期以来都有求。 
在过去的几年中,根据通过直接电控制操作单个纳升尺寸的液滴而将不同方法应用到微流体,已有进展。这样的系统的范例可在Pamula等(并共同转让给本发明的受让人)的美国专利No.6,911,132和美国专利申请公开No.2004/0058450中找到,其公开内容在此并入作为参考。这些技术在如上所述的数字微流体范例的实施方面提供了许多优点,但是用于制造这些微流体芯片的现有制造技术仍然依赖于非常复杂和昂贵的制造技术。目前,微细加工厂利用基于通常用于集成电路(IC)制造工业的半导体加工技术的昂贵加工步骤来制造这些微流体芯片。除了半导体制造技术的成本高以外,不容易进入半导体制造厂,并且其一般不提供像24小时一样快的制造或原型制作周转时间。 
通常,使用基于传统半导体微细加工过程的普通工艺制造微流体芯片。通过薄膜沉积和使用标准光刻技术的图案化的重复步骤在玻璃基板上制造器件。通常,除了两个或三个绝缘层以外,还需要至少两个金属层(一层用于电极,一层用于布线),以及用于在顶板和底板  之间形成间隙(standoff)的层。由于光掩模制造和芯片制造的高成本,用于制造多达100个器件的单个原型制作可能花费多达10000美元,并且根据光刻的水平需要三个月时间完成该单个原型制作。此外,因工艺流程是非标准化的,在第一次制造一些新设计的几个尝试过程中,器件的成品率非常低。 
原型制作所需费用和时间是开发和最优化基于液滴微流体系统的严重障碍。此外,预计高芯片成本和快速定制或提高器件设计的困难将阻碍该多用技术的商业前景。就眼前来说,需要更快、更可靠和低成本的制造技术,以促进这些器件的开发和用户接受度。因微流体系统倾向于结构较大,并且很少检测半导体制造技术的限制,所以应当考虑低分辨率、低成本的批量制造方法。 
特别是,印刷电路板(PCB)技术提供许多性能,并且提供与传统半导体微细加工相似的材料,尽管其分辨率非常低。沉积,光刻图像化导体层和绝缘体层,并将它们堆叠在一起以形成复杂的多层结构。对于制造数字微流体系统而言,可知PCB技术在分辨率、有效性、制造的成本和容易性方面提供极好的平衡。还可知,使用PCB作为基板的另外的优点是,用于传感、控制或分析的电子器件能够以非常低的成本容易地集成。 
通常,在PCB工艺中,用密耳(25.4μm)为单位测量铜线宽和线距,其为比通常在半导体制造过程中获得的亚微米特征量高的量级。通常,PCB工艺不需要如半导体IC制造所需的昂贵的超净环境。此外,与在半导体制造过程中使用硅或玻璃作为制造微流体器件的基板相比较而言,板一般由增强塑料、玻璃纤维环氧树脂、特氟纶(TEFLON) 
Figure G06803222220070730D000041
聚酰亚胺等制成。此外,对于PCB工艺,通常可手动执行对准,以代替半导体掩模对准器。使用由透明片或聚酯薄板制成的廉价掩模代替用于半导体制造的昂贵的玻璃上铬(chrome-onglass)光掩模。在PCB工艺中,机械钻过孔或用激光钻过孔,然后进行电镀,来代替蚀刻和需要真空工艺的用于半导体工艺的气相沉积。通常,通过将逐一图案化的单个板连接到一起而获得多层布线层,这与在半导体制造过程中使用单个基板堆叠多重层或结合晶片而获  得多层布线层相反。总而言之,即使高级PCB工艺向采用一些半导体工艺(例如物理气相沉积)发展,上述这些还是PCB制造工艺和半导体制造工艺之间的主要差别。 
在现今的激烈竞争的商业环境下,迫使产品快速并且成本高效地投入市场,特别是消费电子产品和医学诊断业。本发明的主题涉及广泛可用的、可靠的、价格低廉的、定义完善的印刷电路板(PCB)制造技术的利用。通过利用可靠、易实现、低成本的制造技术制造可重构微流体平台,用于生物医学和其它领域方面的许多潜在应用的芯片实验室装置的开发和认可将更为普及和迅速。 
作为用于开发微流体系统的价格低廉的、设置好的、灵活的并且易实现的制造工艺的PCB技术,其吸引力已被使用较传统连续流微流体系统工作的研究人员所认可。例如,之前,研究人员展示了许多连续流式微流体器件,其基于包含气泡探测器、pH值调节系统、微泵和电容式压力传感器的PCB技术。最近,还报道了通过双向电泳操作和分析单个单元的PCB器件,其具有混合方法,其中PCB用于单块集成硅基微流体器件。然而,依然长期需要用于离散流操作液滴的价格低廉的、灵活的、可重构系统。 
发明内容
在此所公开的装置和方法包括利用在标准电路板(PCB)工艺中制造的基板操作数字微流体液滴的新方式。此设置好的PCB工艺的非常规使用结合了许多新的方面,包括:(1)在PCB上使用铜迹线和焊盘作为用于液滴操作的电极,其中通过电方式(与放置电子构件和发射电子信号相反)在PCB基板的外表面上规定了液滴形式的流体的路线(例如,传输);(2)使用阻焊掩模材料作为电极电介质以作为用于电场感应液滴操作的绝缘体(与使用阻焊掩模相反,如其名称的含意,是用于防止铜线被焊接);(3)使用可感光成像液体或干式阻焊掩模,以使物理结构固定流体;(4)在PCB内使用过孔,用于使得液滴控制电极彼此电连接或使其与焊盘接触;(5)在PCB内的电极内部使用填充了阻焊剂的过孔,以允许紧密组装液滴控制电极;(6)在用  导电环氧树脂填充在电极内部的过孔,以允许紧密组装电极,并不损失电极的导电面积;(7)用光透明环氧树脂填充在电极内部的过孔,用于透过液滴进行光学测量;(8)在PCB的相同表面上,在电极附近使用铜迹线,以提供共同参考电势(共面排列);(9)在电介质层上使用铜嵌入控制电极内,以作为参考电极;(10)在用于流体接口的PCB上使用钻孔,以允许流体流到和流出PCB;以及(11)使用铜线作为加热元件。 
根据本发明的主题提供了用于操作液滴的装置。 
在一个实施例中,提供一种用于操作液滴的装置,其包括含有第一侧表面和第二侧表面的印刷电路板基板。将一组电极配置在基板的第一侧表面上,将电介质层配置在基板的第一侧表面上,并将其图案化以覆盖电极。还包含电极选择器,其用于动态产生一连串阵列电极激活作用,从而电操作配置在基板的第一侧表面上的液滴。 
在另一个实施例中,提供一种用于操作液滴的装置,其包括含有第一侧表面和第二侧表面的印刷电路板基板。将一组驱动电极配置在基板的第一侧表面上,并且配置一个或多个可设定到共同参考电位的参考元件的阵列使其至少与驱动电极阵列基本上成共面关系。将介电质层配置在基板的第一侧表面上,并将其图案化以覆盖驱动电极。还包含电极选择器,其用于动态产生一连串阵列电极激活作用,从而电操作配置在基板的第一侧表面上的液滴。 
在另一个实施例中,提供一种用于操作液滴的装置,其包括含有第一侧表面和第二侧表面的印刷电路板基板。将驱动电极阵列配置在基板的第一侧表面上,并且提供细长的参考元件使其基本平行于基板的第一侧表面,并且与基板的第一侧表面间隔一定距离,以确定参考元件和基板第一侧表面之间的间隔,其中该距离足够容纳配置在该间隔内的液滴。介电质层配置在基板的第一侧表面上,并且被图案化以覆盖驱动电极。还包含电极选择器,其用于动态产生一连串阵列电极激活作用,从而电操作配置在基板的第一侧表面上的液滴。 
在另一个实施例中,提供一种用于操作液滴的装置,其包括含有第一侧表面和第二侧表面的第一印刷电路板,配置在第一印刷电路板  基板的第一侧表面上的驱动电极阵列,和配置在第一印刷电路板基板的第一侧表面上的被图案化以覆盖驱动电极的介电质层。该装置还包括含有第一侧表面和第二侧表面的第二印刷电路板基板,该第二印刷电路板基板基本平行于第一印刷电路板基板,并且与第一印刷电路板基板间隔一定距离,以确定第二印刷电路板基板的第二侧表面和第一印刷电路板基板的第一侧表面之间的间隔,其中该距离足够包含配置在该间隔内的液滴。驱动电极的阵列和一个或多个参考元件的阵列配置在第二印刷电路板基板的第二侧表面上。该装置还包含电极选择器,其用于动态产生一连串阵列电极激活作用,从而电操作配置在第一印刷电路板基板的第一侧表面和第二印刷电路板基板的第二侧表面之间的液滴。 
根据本发明的主题还提供了用于驱动(actuating)液滴的方法。 
在一个实施例中,提供一种用于驱动液滴的方法,其包括在印刷电路板基板的表面上提供液滴的步骤。该表面包括电极的阵列,并且最初,液滴配置在电极中的第一个上,并且其邻近于由第一间隔与第一电极隔开的第二个电极。该方法还包括将第一电极偏置到第一电压,并且将第二电极偏置到不同于第一电压的第二电压的步骤,因此液滴向第二电极移动。 
在另一个实施例中,提供一种用于驱动液滴的方法,其包括在印刷电路板基板的表面上提供液滴的步骤。该表面包括驱动电极的阵列和至少基本共面的一个或多个参考元件的阵列,并且液滴配置在第一个驱动电极上。该方法还包括偏置第一驱动电极以将液滴从第一驱动电极移动到第二驱动电极。 
在另一个实施例中,提供一种用于驱动液滴的方法,其包括在印刷电路板基板的表面和基本平行于印刷电路板表面,并以固定间隔与印刷电路板表面分开的细长的参考元件之间提供液滴的步骤。该印刷电路板表面包括驱动电极阵列,并且液滴配置在驱动电极的第一个上。该方法还包括偏置第一驱动电极,以将液滴从第一驱动电极移到第二驱动电极。 
在另一个实施例中,提供一种用于驱动液滴的方法,其包括在第  一印刷电路板基板的表面和基本平行于第一印刷电路板,并以固定间隔与第一印刷电路板分开的第二印刷电路板的表面之间提供液滴的步骤。该第一印刷电路板的表面包括驱动电极阵列,并且液滴配置在驱动电极的第一个上,第二印刷电路板的表面包括驱动电极的阵列和一个或多个参考元件的阵列。该方法还包括偏置第一驱动电极,以将液滴从第一驱动电极移动到第二驱动电极的步骤。 
在另一个实施例中,在无任何物理性质不同的参考元件的印刷电路板的表面上的驱动电极阵列上,提供一种用于驱动液滴的方法,其中液滴配置在第一个驱动电极上,并且该液滴朝向第二或第三个驱动电极移动。该方法还包括偏置第二和第三驱动电极,由于应用在第二和第三电极之间的电场不均匀,从而将驱使液滴朝向第二或第三电极中任何一个移动或远离第二或第三电极中任何一个。在这种情况下,液滴可能不以逐步方式移动,即从一个电极移动到该电极的邻近电极,而是可能利用被称为是双电泳的现象以非均匀电场梯度朝向或远离目标电极而连续移动。 
根据本发明的主题还提供了用于将两个或更多的液滴合并为一个液滴,并将一个液滴分离为两个或更多液滴的方法。 
在一个实施例中,提供一种用于将两个或更多的液滴合并为一个液滴的方法,其包括在印刷电路板基板的表面上提供第一和第二液滴的步骤。该表面包括电极阵列,其中该电极阵列包括包含第一外电极、邻近第一外电极的中间电极和邻近中间电极的第二外电极的至少三个电极。该第一液滴配置在第一外电极上,并且其邻近于中间电极,该第二液滴配置在第二外电极上,并且其邻近于中间电极。该方法还包括选择三个电极中的一个作为目标电极,并选择三个电极中的两个或更多,以根据目标电极的选择而激活和停用。此方法还包括激活和停用所选择的电极,以移动第一和第二液滴中的一个,使其朝向另一个液滴移动或使第一和第二液滴朝向彼此移动,因此在目标电极上,第一和第二液滴合并,以形成结合的液滴。 
在另一个实施例中,提供一种用于将一个液滴分离为两个或更多液滴的方法,其包括在印刷电路板基板的表面上提供初始液滴的步  骤。该表面包括一组电极,其中该电极阵列包括包含第一外电极、邻近第一外电极的中间电极和邻近中间电极的第二外电极的至少三个电极。最初,初始液滴配置在三个电极中的至少一个上,并且其邻近于三个电极中的至少另一个。此方法还包括将三个电极的每一个偏置到第一电压,以在三个电极上定位初始液滴。此方法还包括将中间电极偏置到不同于第一电压的第二电压,以将初始液滴分离为第一和第二分裂液滴,因此在第一外电极上形成第一分裂液滴,在第二外电极上形成第二分裂液滴。 
在另一个实施例中,提供一种用于将一个液滴分离为两个或更多液滴的方法,其包括在印刷电路板基板的表面上提供初始液滴的步骤。该表面包括电极,其中该电极阵列包括包含第一外电极、邻近第一外电极的中间电极和邻近中间电极的第二外电极的至少三个电极。最初,初始液滴配置在三个液滴中的至少一个上,并且至少部分覆盖三个电极中的至少另一个。该方法还包括将中心电极偏置到第一电压,以定位初始液滴,因此初始液滴至少部分覆盖三个电极。该方法还包括将中间电极偏置到第二电压并将第一、第二外电极中至少一个偏置到第三电压,第二和第三电压不同于第一电压,以将初始液滴分离成第一和第二分裂液滴,因此在第一外电极上形成第一分裂液滴,在第二外电极上形成第二分裂液滴。 
因此,本发明的主题的目的是提供用于基于传统印刷电路板(PCB)技术制造和操作基于液滴的微流体系统的装置和方法,其中通过对定义在PCB上的电极施加电压而在PCB表面上驱动液滴。 
以上描述了本发明的主题的目的,其通过本发明的主题全面或部分地被说明,其它目的在与下面详细描述的附图结合的描述过程中将变得明了。 
附图说明
图1A是本发明的实施例的俯视图,图1B-1D是其剖面图,其示出了具有在电极内的填充或未填充的过孔的PCB上的严格共面设置; 
图2A是本发明的实施例的俯视图,图2B是其剖面图,其示出了  具有在电极内的填充或未填充的过孔的PCB上的基本共面设置; 
图3A是本发明的实施例的俯视图,图3B是其剖面图,其示出了具有在电极内的填充或未填充的过孔的PCB上的嵌入式共面设置; 
图4A是本发明的实施例的俯视图,图4B是其剖面图,其示出了具有在电极内的填充或未填充的过孔的PCB上的平行板或双平面设置; 
图5是定位在根据本发明用于操作液滴的PCB上的具有过孔的电极密集阵列上的液滴的透视图(未示出贮液器); 
图6是示出根据本发明用于检测不同形状和不同尺寸的驱动电极的液滴运输性能的PCB芯片的正面的示图; 
图7A-7D是示出根据本发明的各种电极形状的示图; 
图8A-8B是分别示出特征为三相液滴运输装置和用于分散、存储和混合液滴的其它结构的PCB芯片设计的正反面图的本发明的实施例的示图; 
图9A-9B是分别示出特征为三相液滴运输装置和用于分散、存储和混合液滴的其它结构的PCB芯片设计的正反面图的本发明的另一个实施例的示图; 
图10是示出根据本发明的不同形状的1.5mm电极的液滴运输特性(频率对阈值电压)的曲线图; 
图11是示出根据本发明的不同形状的1.0mm电极的液滴运输特性(频率对阈值电压)的曲线图; 
图12是示出根据本发明的液滴运输的电压的时间稳定性的曲线图; 
图13是示出根据本发明的在给定切换频率下运输液滴的最小电压需求的曲线图; 
图14A-14D是示出说明根据本发明的液滴运输的延时图象和混合的示图。 
具体实施方式
印刷电路板(PCB),有时候也被称为印刷线路板(PWB),其是用  于使用在基板上图案化的导电焊盘和迹线而互连电子组件的基板。通常,PCB是通过如下方式制造:将铜层附着在整个基板上,有时附着在两侧(称为制造“空PCB”),然后在应用临时掩模之后去除不需要的铜(例如通过在酸内蚀刻),仅剩下所需要的铜迹线。在基板的相对面之间的电连接(“通孔”)可通过穿过基板,机械钻孔或使用激光钻孔,并且将钻孔的内部金属化以在两面之间提供连续的电连接而形成。多层板可通过将单个处理基板粘结到一起而形成。通常,在铜层内的电极线是通过在减成工艺中从空PCB蚀刻铜而定义,而一些铸造工厂使用半加成和全加成工艺,其中通过电镀或其它技术在基板上设置铜。 
如上述所述,数字微流体系统是一种微流体方法,其中在包含电极阵列的基板上电操作流体的离散液滴。在通常使用的结构中,液滴被夹在两个平行板之间,其中顶板物理地限制液滴,底板包含电绝缘的可单独寻址的驱动或控制电极(或元件)阵列。通常,还需要一个或多个参考电极(或元件)来控制液滴的电势。可将参考电极配置在与驱动电极相同的基板上(共面)或相对的平板上(双平面)。环绕液滴的两个板之间的空间一般是打开的,并且其可由空气或者不互溶流体填充以防止蒸发。可被用于含水液滴的不互溶流体的例子包含硅酮油、氟硅酮油或碳化氢油。当参考电极和驱动电极配置在相同的基板上时,相对板不用作电路部分,而仅用作盖板以物理地包含流体,并且对于器件操作可不需要该相对板。 
通过将电势应用到参考电极和一个或多个驱动电极之间实现液滴驱动。所应用的电势可以是DC或AC,参考电极的不必物理地区别于驱动电极。邻近于激活的控制电极的微流体将变得被引向该控制电极,并且朝该控制电极移动。使用用户定义图案(可能使用电极选择器)可顺序激活控制电极,以沿由连续控制电极定义的任意路径传输液滴。除了传输以外,基于控制电极的设计和激活图案,可完成包括液滴的合并、分离、混合、变形和分配的其它操作。 
数字微流体处理器主要由具有一个或多个参考电极的控制电极阵列组成。完整的芯片可能包括许多其它类型结构,包括通道、贮液  器、顶板、传感器、输入口、输出口,等等。此电极阵列需要互连,以将某些电极电连接在一起,并且将电极连接到用于连接外电路的接触焊盘。以前,使用薄膜沉积和从半导体制造借鉴来的光刻技术,在玻璃或硅基板上制造数字微流体芯片。通过在单个初始基板上沉积和图案化导体和绝缘体的连续层而构成用于布线的多层电互联。本发明是关于装置和方法的,因此可在与传统基于玻璃或硅的工艺相反的标准PCB工艺内有利地构造数字微流体处理器。 
本发明利用了与基于玻璃或硅的工艺相比在PCB工艺内产生多层导体更容易的优点。这主要是因为在PCB工艺过程中,在分离的基板上制造金属层,在最后将这些基板层压到一起,而不是在单个基板上顺序积层。 
PCB数字微流体芯片,如本发明所设想的,可具有一个或多个布线层。通过减成电镀、板电镀、图案电镀或加成电镀,将导体布线图案转移PCB基板上。当仅使用一个布线层时,在不需要任何过孔的单面板上制造用于操作液滴的所有电极和用于电输入/输出连接的焊盘。一般,将需要两个或更多布线层,用于有必要使用多层板的复杂的液滴控制操作。通过粘结几个双面板或利用无需机械钻孔的积层(build-up)/连续的板(例如,化学蚀刻过孔或激光钻孔,然后经化学镀)而装配多层板。通过定义,双面板在板的两面具有布线,所述板可进一步分类为未经通孔金属化的板和经过通孔金属化的板。经过通孔金属化的板进一步分类为电镀通孔金属化的板和填充通孔金属化的板。在电镀的通孔金属化的板内,通过铜镀(例如,电镀或化学镀或其组合)金属化孔,在填充的通孔金属化的板内,可用例如铜胶、银胶、导电环氧树脂等的导电性胶填充孔。 
在数字微流体芯片内,钻通孔(或过孔),使其穿过在多层板的一面上的驱动电极,以在板的相对面实现电连接。液滴的印迹由驱动电极的区域所定义。为了获得小液滴体积,必须最小化驱动电极的区域。因穿过驱动电极钻出过孔,所以最小化包括焊盘/连接盘直径的过孔的直径是重要的。因此,过孔在定义可在PCB工艺内获得的液滴的最小体积方面起重要作用。因不同的原因,即避免阻碍线布设通道,  和最大化可用于迹线的PCB表面面积,PCB工业驱使过孔尺寸下降。许多积层工艺使用通过使用准分子激光器穿通而形成的小通孔。有许多用于PCB工业的各种积层工艺,包括,但是不限于,表面层合电路板(SLC),其中通孔是光致形成的;DYCOstrateTM,其中通孔是经水平干等离子体蚀刻的;薄膜再分布层(FRL),其中最外层电介质是光敏的,同时内层构成常规多层板;导电粘结挠性板(ConductiveAdhesive Bonded Flex)(Z-link);积层结构系统(Build-upStructure System)(IBSS),其中电介质是光敏的;连续结合中心(Sequential Bonding Core)/任意层内部过孔(Any-Layer InnerVia-Hole)(ALIVH),其中CO2激光器用于钻通孔,然后用银胶填充孔;载体形成电路(Carrier Formed Circuit),其中在不锈钢载具上预备分立电路,然后将其层压在FR-4预浸材料上;卷板积层(Roll SheetBuildup),其中通过轧制热量和压力而层压单面环氧树脂覆盖的金属薄片;和薄板组合,其与卷板组合相似,但是层压双面或多层电路。在对数字微流体芯片使用组合板(Z-Link)的一个实施例中,可将由聚酰亚胺背封的包覆铜组成的若干挠性板层压在一起,然后层压在刚性板上以形成多层板。因此,可在每个挠性层内穿孔、激光钻孔或者等离子体钻孔。然后,可由导电粘合剂填充互连各种层的孔。 
一般实施例 
参考图1A-1D、图2A-2B、图3A-3B、图4A-4B和图5,下面更详细地讨论使经PCB加工的基板适用于对液滴操作的要求。如下面将进一步详细地讨论,图1A-1D涉及包括在具有电极内的填充或未填充的过孔的PCB上的严格共面配置的PCB数字微流体芯片10;图2A-2B涉及包括在具有电极内的填充或未填充的过孔的PCB上的基本共面配置的PCB数字微流体芯片20;图3A-3B涉及包括在具有电极内的填充或未填充的过孔的PCB上的嵌入式共面配置的PCB数字微流体芯片30;图4A-4B涉及包括在具有电极内的填充或未填充的过孔的PCB上的平行板或双平面配置的PCB数字微流体芯片40;图5示出位于用于液滴操作的PCB上的具有过孔的电极密集阵列上的液滴。图5一  般地示出本发明的原理,其中流体样品可被数字化为离散的液滴D,之后可独立地分配、传递、培养、检测该离散的液滴D或使其与其它液滴反应(“数字微流体系统”的方法)。 
在图1A-1D、图2A-2B、图3A-3B和图4A-4B所示的每个实施例中,如在下面将更详细地各自描述这些实施例,提供了PCB基板板12,该板具有顶部第一侧表面13和底部第二侧表面14。例如铜迹线驱动电极等的驱动控制电极(或元件)16可配置在PCB12的顶面13上,并且例如铜迹线参考电极或平行板参考电极等的参考电极(或元件)18也可配置成多种用于液滴操作的构造。通常,例如可液态感光成像(LPI)阻焊掩模等的阻焊掩模用于传统PCB工艺,作为外层以防止在设置电子组件的过程中铜线被蚀刻或电镀或焊接。然而,在该外层用于根据本发明驱动液滴过程中,该外层是用于将液滴与施加在驱动和参考电极16、18上的电势绝缘的绝缘体22。驱动电极16完全被绝缘体22绝缘,该绝缘体优选LPI阻焊掩模或包含临时阻焊掩模的某种其它电介质。完全绝缘意味着驱动电极16的所有面包括边缘都被覆盖。使用包括幕式淋涂、旋涂、喷涂或丝网印刷的但不限于这些的传统工艺应用该绝缘体22(LPI阻焊掩模)。如果需要参考电极18,可暴露一些铜结构,并且不绝缘这些铜结构,以为液滴提供直接参考电势。该暴露部分按通过铜功能部件的分辨率以及阻焊掩模的分辨率和阻焊掩模层和铜层的重合定义的PCB工艺所允许的那样,接近于驱动电极16。参考电极18的被暴露区可能具有可选的导电表面加工,其上通常包括浸银(immersion silver)、浸金(immersion gold)和浸镍(electroless nickel)/浸金(ENIG)。 
基板材料 
如上所述,本发明的静电微流体器件包括可在几乎任何通常用于制造PCB的板材料上制造的基板12。这些材料包括FR-2、FR-4、FR-5、聚酰亚胺、KaptonTM、RogersTM、BuroidTM、BT、氰酸酯和特氟隆(PTFE),但是不限于此。刚性、刚-挠性或挠性基板可用作制造这些器件的基底材料12。 
电极形成 
将PCB的最外导电铜层图案化,以形成通过电场操作液滴所需的驱动电极。驱动电极16根据特殊应用取各种形状和形式。例如,可使用矩形电极阵列、圆形电极阵列、六边形电极阵列、星形电极阵列,和其它联锁或交指型电极阵列,以及细长的电极结构。还可在相同的基板(共面)上的相同的导电层内或分离的导电层内图案化参考电极18,或者可将参考电极18配置在分离基板上(双平面)。 
在如图1A-1D所示的一个实施例中,可在与驱动控制电极16相同的导电铜层内图案化参考电极18,其中从参考电极18部分上方去除绝缘体22,以暴露下面的导电层。该图案允许参考电极18和液滴之间的同时电接触。在该实施例中,参考电极18可能邻近驱动控制电极16或在驱动控制电极16之间设置。 
在如图2A-2B所示的另一个实施例中,可将参考元件18形成为在绝缘体22顶上直接图案化的分离导电层。导电层可以是由真空处理、化学镀、电镀、层压或其它方法沉积的薄金属膜,并且该导电层被图象化以形成参考元件18。参考元件18可采用各种形状和形式,并且其可位于驱动元件16的正上方和/或位于驱动元件16的侧面(即参考元件18不需要与驱动控制元件16精确对准)。在一种设置中,参考元件18可形成层叠在驱动元件16上的导线栅格或网格。在该设置内,参考元件18能够电屏蔽控制电极16,其中它们重叠,所以当相对于驱动控制元件16调整参考元件18的尺寸,并定位该参考元件18时,理论上应当将重叠最小化。在另一个设置中,选取栅格的节距小于电极间距,但不是电极间距的整数因子。可使用在绝缘体22上沉积金属的加成金属PCB工艺实现该分离的导电层设置,或者可使用在薄挠性电路基板的相反面上形成参考元件18和驱动元件16的减成工艺实现该分离的导电层设置。在后一情况中,挠性电路基板用作驱动控制元件16的绝缘层,并且挠性电路板可被层压在刚性基板上,以提供机械刚性,并且提供用于电极的电互连。 
在如图3A-3B所示的另一个实施例中,可将参考元件18配置在  驱动控制元件16内的嵌入式共面设置内。在这样的设置中,在没有被绝缘体22覆盖的区域内,具有被覆金属26的过孔25可起到参考元件18的作用。此外,还可配置具有被绝缘体22覆盖的被覆金属24的其他过孔24,其作用如下所述。 
在如图4A-4B所示的另一个实施例中,可将参考元件18配置在分离的基板上作为平行板。通常,将包含驱动电极16的基板和包含参考元件18的基板设为彼此相对,并且在它们之间具有间距G以包含液体,从而形成夹层结构。附加平行板设置可包括两个相反的表面,这两个相反的表面就其本身而言是静电PCB微流体器件(上“板”可能是具有顶部第一侧表面13’和底部第二侧表面14’的PCB),并且在这两个表面上都具有驱动元件16,并且在至少一个表面上具有参考元件18。 
因为对用于基于电场的液滴操作的驱动电极16充电需要极小电流,所以形成电极的导体材料的电阻性可充分地比PCB应用一般可以接受的电阻性更强。因此,除了铜以外,还可使用广泛的不同类型的导体。这包括一般认为不适合于在PCB上形成焊盘和迹线的导体。同样,该导电层可充分地比PCB通常优选的导电层的厚度更薄。理论上,该导电层应当尽量薄,以最小化导电功能部件的形貌,随后该导电结构必定被绝缘层所覆盖。此外,最小化导体厚度提高PCB表面的平面度,对于在表面恒定不变、可靠地操作液滴,提高PCB表面的平面度是所期望的。通过使用具有最小导体厚度的初始基板(例如,1/4oz.或5μm的铜覆盖层)或者通过增加抛光或蚀刻步骤以在沉积绝缘体之前减小导体厚度,可最小化导体厚度。 
电极互连和过孔 
PCB基板12上的导电迹线用于电连接驱动电极16和参考元件18。每个驱动电极16或每个参考元件18可与一个或多个其它驱动电极16或参考电极18、在相同PCB基板12上的其它电子组件或用于外部连接的焊盘连接。在一个设置中,沿PCB的边缘配置用于外部连接的焊盘,并且该PCB适合用于板边接线插座28(见图8A-8B)。  在另一个设置中,将焊盘阵列配置在PCB的表面上,并且使用弹簧式管脚、测试用线夹或各向异性导电材料带29接触这些焊盘(见图9A)。在另一设置中,排针、接插件或其它离散电子组件连接到PCB,以促进与外电路的连接。 
如图1A-1D、图2A-2B、图3A-3B和图4A-4B所示,可通过本领域所公知的PCB方法实现在基板12的不同导电层之间的电连接,由此孔或过孔24是从在基板12的任何一面上的两个待电连接的导电区域(顶面13和底面14)经钻孔穿过基板12的。虽然图中示为圆形,可以理解的是过孔24可以是任何形状的,例如矩形、椭圆形等,该通孔可形成在基板材料12内。还可通过化学镀或电镀或使用其它方法形成被覆金属26而金属化孔24的内部(镀通孔金属化),因此在过孔位置处的两个相对面之间建立电连续性。如上所述,导电胶(填充通孔金属化)也可用于代替镀通孔金属化以建立电连续性。 
为了在电极和迹线之间建立电连接,几个方法是可用的。在一个方法中,从在PCB的相同面上的电极向外引出导线或迹线,然后如果需要,可在远离电极的过孔位置处穿过基板规定导线路线。在另一个方法中,在电极内制备过孔。在此情况下,可能需要提供一种用于填充或覆盖钻孔的方法以防止液体通过钻孔进入或蒸发。使用化学镀或电镀可将过孔24镀覆使其封闭,或者可使用各种技术和各种材料(导电环氧树脂、不导电环氧树脂、透明环氧树脂或任何其它材料)填充或覆盖过孔24。在用任何这些填充材料填充该过孔之后,然后可通过化学镀或电镀用铜覆盖PCB表面,以完全遮蔽该过孔,以使液滴在表面上移动。 
在一种方法中,使得孔足够小,从而防止例如传统液态阻焊掩模材料等的以液体形式沉积的绝缘体,通过粘性效应或表面张力效应渗入孔中,或者可使得孔足够大,从而液态阻焊掩模可进入过孔,从而形成阻焊掩模填充的过孔24’(见图1B)。或者,可增加附加工艺步骤,以在沉积绝缘体之前用环氧树脂或类似的材料填充钻孔,从而形成环氧树脂填充过孔24”(见图1C),或透明的环氧树脂填充过孔24”’(见图1D)。另一个方法是使用“遮盖”钻孔的干膜绝缘体材料有效  覆盖钻孔,并密封芯片表面。这几个方法的可能的缺点是它们导致在导电电极的边缘内形成不导电区域,这减小了可用于产生电场的电极的区域。为了解决这个问题,几种技术可用于产生导电填充,包括使用导电环氧树脂填充孔,和使用化学镀或电镀在不导电填充材料上提供导电表面涂层。另一个可供选择的方法是电镀钻孔,使得该钻孔完全由金属所填充。该方法可能需要整平步骤以去除由较大量电镀沉积在基板表面上的多余金属。在此情况下,通过使用仅在环绕过孔的区域内添加附加金属的“钮扣电镀(button-plating)”工艺,可简化在基板表面上的整平和导体厚度控制。所得“钮扣(button)”之后可通过抛光PCB表面而被去除。在该方法中,在钻孔内可沉积大量金属,而不增加在PCB表面上的金属的最终厚度。 
电极绝缘 
进一步参考图1A-1D、图2A-2B、图3A-3B和图4A-4B,驱动电极16通常被绝缘体22所电绝缘,以防止当将DC电势施加到驱动电极时,在电极和导电液体之间流通直流电流。应当注意的是,AC电势也可施加于驱动电极以便使能电场诱导的液滴操作。虽然可以使用任何电介质,阻焊掩模通常用于传统的PCB工艺以保护在PCB上的铜线,并仅暴露在最终焊接电子组件处的铜。用于将驱动电极16绝缘的最直接的方法是使用阻焊掩模材料(或其它电介质)作为电绝缘体22。液体和干膜阻焊掩模都适合于用作电绝缘体22。因为感光阻焊掩模可容易地被图案化以对参考元件18或在绝缘体22下的接触焊盘提供电输入,所以优选感光阻焊掩模。 
可采用两种阻焊掩模:液态感光(LPI)或干膜阻焊掩模(DFSS)。LPI不是正形的。DFSS提供近垂直侧壁,并且已有其用于制造电镀模,密封流体通道,以及作为用于微通道的粉末喷砂的掩模的报道。然而,DFSS未曾用于形成贮液器或作为衬垫材料以在两个平行板之间提供间隙(standoff)和密封,如在本发明中设想的那样。 
在一些应用中,可能不存在具有理想的热、机械、电或光特性的组合的焊接掩模材料。在这些情况下,可用其它类型的绝缘材料代替  阻焊掩模材料或与阻焊掩模材料结合。例如,对PCB基板可应用旋涂材料,如聚酰亚胺,可浸涂或可旋涂或可喷涂或可刷涂材料,如TEFLON
Figure G06803222220070730D000191
AF和CytopTM,气相沉积或溅射材料,如二氧化硅,以及例如聚对二甲苯(parylene)等的聚合物。 
作为用于绝缘体22的阻焊掩模的替换物,聚对二甲苯的薄层可在物理气相沉积(PVD)工艺中作为电介质被沉积。聚对二甲苯是包括聚对二甲苯C、D和N的聚对二甲苯基聚合物族的总称。如用于此情况内,聚对二甲苯指任何聚对二甲苯的组合物及其混合物。使用聚对二甲苯的主要优点是其可被沉积为正形层,并且厚度比LPI和DFSS的厚度小很多。在PCB方法中,可涂覆薄达0.5mil(1mil=25.4μm)的LPI,而可涂覆薄达0.5μm的无针孔的聚对二甲苯。这样薄的绝缘体降低了驱动液滴所需电势。在某些应用中,将必须将电介质图象化以暴露铜电极。可通过反应离子蚀刻、等离子灰化、化学蚀刻或通过激光烧蚀将聚对二甲苯图案化。或者,聚对二甲苯还可通过利用窄带(例如,3M Mask Plus II Water Soluble Wave Solder TapeNo.5414,其用于在波峰焊过程中掩蔽在PCB上的金手指)掩蔽需要暴露的区域而被选择性地沉积。其它可用作电介质的材料代表性例子包括硅酮、聚亚安酯、丙烯酸树脂和其它可旋涂或可沉积电介质。 
通常,为了降低驱动流体所需电压,希望最小化绝缘体22的厚度。 
间隙层 
还设想了可沉积和图案化阻焊掩模的附加层,以在PCB表面上形成物理结构,例如用于聚集或导向液体流的井和通道(未示出)。 
附加工艺 
减成工艺和加成工艺的组合 
在另一个实施例中,减成工艺和加成工艺的组合可用于制造本发明的PCB液滴操作板。减成工艺可用于制造多层板,该多层板定义所有到液滴控制电极的电布线和电互连。然后可应用可图案化的电介质  层。可通过激光钻孔或光刻法在该电介质内图案化过孔。在一个实施例中,可使用LPI作为电介质。可选地镀覆暴露在孔内的电极焊盘,以使得其与电介质表面在同一平面上。在此时,可使用加成工艺以使用铜化学沉积定义所有电极,因为可以获得较小行的间距。 
后加工 
成品器件可包括标准PCB工艺和非标准工艺的组合。例如,可将单步疏水涂层应用到成品PCB,以促进液滴的传输。此外,对于某些应用,使用阻焊掩模作为电介质可能不可取,在此情况下,随后可以使用不可用于标准PCB工艺的特殊材料涂覆未绝缘的PCB。然而,在此情况下,使用PCB作为初始基板,并且使用PCB工艺以形成导电迹线,依然提供全PCB兼容工艺的许多(如果不是大部分)有利之处。 
在一个实施例中,可在多层PCB上制造所有电布线所需导线。然后可通过抛光或化学蚀刻去除一些或所有铜外层。然后包含操作液滴所需的所有电导线的该PCB可以作为用于进一步加工的基板,以将具有较细行间距的驱动电极和参考电极图案化。为了获得细行间距,可以使用包括薄膜沉积和光刻的半导体加工技术将控制电极图案化。 
共面参考元件的电镀 
在参考电极18也在与驱动电极16相同的层内被图案化的实施例中(见,例如图1A-1D),当LPI阻焊掩模仅覆盖驱动电极,并且使参考电极暴露时,在LPI阻焊掩模内可能具有明显的微坑。因液滴可能不和参考元件接触,该微坑可能会影响操作的可靠性。在此情况下,可电镀参考电极,使得参考元件的表面与LPI阻焊掩模(未示出)在同一个平面。可在用铜或镍终饰表面之前执行该电镀步骤。 
在外表面上的参考电极 
在一个实施例中,在如上所述形成所有铜电极之后,然后可使用LPI涂层作为中间层电介质,并且可在LPI上将另一铜层图案化以作为参考电极。该电介质也可以是在典型多层结构中的薄(2mil以下)  预浸PCB板或者其可为具有作为在最外层上的参考电极的铜功能部件的挠性板。恰好在该最外铜层下面的铜层具有定义驱动电极的铜功能部件。 
电子器件的集成和PCB上的检测 
在另一个实施例中,设想了本发明的PCB还可由在不用于液体操作的区域内的电子组件组成。电子组件可包括微控制器、继电器、高压多路复用器、电压转换器(DC-DC用于逐渐增加电压,DC-AC,AC-DC等)、例如LED的电光元件、光电二极管、光电倍增管(PMT)、加热元件、热敏电阻器、电阻式温度器件(RTD)和其它用于电化学测量电极。铜迹线还可用于液滴的阻抗测量。通过曲折铜迹线可实现电阻加热元件,并且电阻加热特性将依赖于铜线的尺寸。在一个实施例中,包含例如PMT或光电二极管的光探测器的PCB可用作平行板,以形成具有液滴操作PCB板的夹层结构。在另一个实施例中,在标准PCB工艺中获得的金涂覆电极可用于电化学测量。 
用于流体输入/输出的钻孔 
PCB上机械地钻得的孔通常用于将板附着或固定于另一个表面。进一步设想在本发明的PCB微流体芯片内,这些钻孔可用作流体输入/输出口用于将流体添加到PCB基板表面和从PCB基板表面去除流体。进一步设想这些钻孔可与液体源匹配,该液体源包括挠性管、注射器、吸管、玻璃毛细管、内部静脉线或微量渗析腔,但并不限于此。在这些管内的流体可通过压力或任何其它方法驱动。来自管道的液体的连续流可通过这些钻孔与PCB连接,并且其可直接从液流被离散化成液滴或者通过在PCB上的中间贮液器离散化成液滴。 
例如,在一个实施例中,金属化钻孔(见,例如图9A-9B中的钻孔32)可设置在邻近于控制电极的位置,以作为用于在电极表面上安置和去除液体的流体输入/输出口。在另一个实施例中,可配置未金属化钻孔(见,例如图9A-9B中的钻孔34)用于流体输入和输出,并且该钻孔可与在阻焊掩模内蚀刻的通道连接,之后该通道导向贮液  器(未示出)。该贮液器可具有电极,该电极用于例如通过使用电场调节的液滴分配技术等分配。在另一实施例中,可以用电介质覆盖所提供的用于流体输入/输出的金属化的钻孔,此外其还具有环绕钻孔的电极的同心环。在此情况下,通过压制流体穿过孔,然后使用电场在电极上分配液滴,而可在孔外径向地分配液滴。在另一个实施例中,通过收集在孔区域内的液滴,并使得液滴利用重力滴进放置在孔下面的容器内,钻孔可用于输出液体使其进入废液贮液器内或任何其它的片外容器。 
从过孔提取脱离平面的液滴 
通常,在具有一个或两个包括PCB的板的夹层结构内的水平面内操作在本发明的装置上移动的液滴。在进一步的实施例中,在PCB上钻出的孔可用于从在垂直平面内的夹层结构提取出液滴。可以多种方法通过孔提取液滴。在一种在被限定在夹层结构内的液滴和大孔之间利用压强差的方法中,可通过恰好将液滴置于孔下面而被动地推进液滴使其穿过具有大于液滴半径的直径的孔。还可通过电方法提取液滴,其中添加另一个板到夹层结构,并且通过应用电势而可从夹层结构引出液滴并使其进入新形成的夹层结构。在此情况下,为了简化提取工艺,可在共面PCB基板和具有电极的另一个基板之间形成夹层结构。当这些板都形成平行板设置时,液滴将仅接触共面PCB基板,并当在另一个基板上应用电势以从平面内引出液滴时,该液滴垂直移动到另一个基板上。还可以利用重力垂直移动液滴以冲压在另一板上。用于这样垂直驱动液滴的应用包括DNA或蛋白质冲压应用。从这些孔提取的液滴还可用于增加吸光率测量用光程,并且传输到另一个夹层结构使得能够在另一个层内传输。 
生物化学合成和分析 
通过如本发明所公开的在PCB基板上操作液滴,可执行许多生物化学反应。如在此所公开的那样,本发明提供一种用于通过光和电探测方法探测在样品溶液内的目标分析物的装置。样品溶液可包括任何  数量的物品,包括体液(包括实际上任何生物体的血液、汗液、泪水、尿液、血浆、血清、淋巴液、唾液、肛门和阴道分泌物、精液,并且优选哺乳动物的样品,特别优选人类样品,但不限于此);食物和环境样品(包括空气样品、农用样品、水样品和土样品,但不限于此);生物战剂样品;研究样品;纯化样品,例如纯化染色体组DNA、RNA、蛋白质、细胞,等等;原始样品(细菌、病毒、真菌,等等),但不限于此。可在如这里所公开的PCB基板上执行的测定类型包括酶法测定、DNA等温或热循环放大测定、包括夹层和均匀设置的免疫测定和具有光和电探测方法的基于细胞的测定。在生理样品内测定的分析物包括代谢物、电解液、气体、蛋白质、荷尔蒙、细胞因子(cytokines)、肽、DNA和RNA。 
在一个实施例中,可将人类生理样品输入到PCB上的贮液器内。该贮液器可由干膜阻焊掩模所限定。然后可将样品分配成液滴,该液滴将与提供在PCB上或输入到PCB上的适当的试剂液滴混合。然后可光学(例如通过吸光、反射、荧光和发光)监控某些些酶法测定。在吸光的情况下,可将过孔填满光学透明材料,因此光可穿过位于这些过孔中的一个上的液滴,用于测量吸光率。 
在另一个实施例中,可使用这里所述的液滴操作技术将生物化学样品合成在PCB基板上。例如,在PCB上,从贮液器可分配许多蛋白质液滴,这些液滴与不同试剂混合,并且培养其使其自动达到条件以结晶化蛋白质。 
侧壁传输 
在进一步实施例中,可使用厚度与液滴高度具有相同数量级的铜迹线,使得液滴被包含在位于相同基板上的迹线之间,并且由绝缘体所覆盖。通过基本在基板平面内应用而不是垂直于基板应用的电场驱动液滴。不同于共面设置,其中液滴位于共面的驱动电极和参考电极和平行板设置上,其中液滴被夹在基板上的驱动电极和平行基板的共同参考电极之间,在该结构中,液滴被夹在共面的驱动电极和参考电极之间。 
具体实施方式
在上面已讨论了本发明的一般实施例和工艺,现在将讨论用于操作微量液体样品的装置的制造的更加具体的实施例,其中该装置包括印刷电路板基板。 
在优选实施例中,在FR-4基板的两面层压a1/4Oz(~9μm)包覆铜。穿过基板钻出8mil的过孔。然后用铜电镀这些过孔,并用阻焊掩模或环氧树脂填充这些过孔。优选地,将过孔钮扣镀(button-plated)使其达到约5μm的厚度,其中特定地镀过孔,而其余板被掩模所覆盖。机械整平钮扣状物,然后用阻焊掩模或不导电环氧树脂填充过孔。在处理完过孔之后,执行闪熔电镀步骤至小于5μm的厚度。在需要未填充过孔的情况下,可执行另一钻孔步骤,以获得未填充孔,并且如果需要,执行电镀。暂时,通过穿过掩模蚀刻而将设计的电极图案转移到具有2mil的最小行间距的铜上。将LPI图案化,并覆盖其使其达约0.5mil的厚度。最后,层压和图案化干膜阻焊掩模,以形成用于保持液体的物理结构(例如井和/或通道),,并且还作为间隙材料。在另一个实施例中,还可通过使用多个LPI阻焊掩模涂层中的一个或通过层压和蚀刻包覆铜而获得间隙层。 
试验测试和结果 
已执行试验,其中用于电场调节液滴操作器的两层单板设计被提交给商业可用电子PCB制造商,并经测试。该设计包括用于传递和混合液滴的不同控制电极的形状系列以及用于从较大液体体积分配液滴的专用电极形状。利用在PCB表面上的相同的铜层内所图案化的导电迹线,将电极与接触焊盘连接。如果需要,使用在距控制电极的远距离位置处的传统过孔在板的两面之间布置迹线。已测试了几个不同芯片设计和互连方案。 
一些芯片包括电极的单一线性阵列的若干副本,其中每个阵列副本内的相应电极与相同电信号连接,因此可同时控制多个相同的阵列。其它芯片包括电极“总线”或传送器结构,其中在控制电极的连  续线内的每四个电极与相同控制信号连接。使用这样的结构允许使用固定数量的控制信号控制任意长的传输路径。可将多个液滴接入总线或与总线切断,并且可将其同步传输。沿PCB侧面排列接触焊盘,并设计使其接触标准边卡连接器或标准SOIC试线夹。 
图6、7、8A-8B和9A-9B示出因试验目的而制造的芯片的几个范例。图6示出用于测试不同形状(圆形16a、矩形16b、小曲率的星形16c、大曲率的星形16d)(见图7)和不同尺寸的控制电极的液滴传输性能的PCB芯片的正面(结果参考下面的图10-12讨论)。在图6中所示的芯片包括十六个不同的线性电极阵列。图8A和8B是以三相液滴传输器以及用于从片上贮液器分配、存储和混合液滴的其它结构为特征的芯片设计的正视图和背视图。过孔24用于从PCB背面到在PCB正面上的控制电极给电信号规定路线,并且穿过沿PCB的一面定位的边卡连接器的接头28制成电触点。图9A和9B是以三相液滴传输器以及用于从流体输入/输出口32分配、存储和混合液滴的其它结构为特征的另一个芯片设计的正视图和背视图。过孔24用于从PCB背面到在PCB正面上的控制电极给电信号规定路线,并且穿过所设计的使用SOIC测试芯片29接触的焊盘阵列制成电触点。 
控制电极阵列设计有1.0mm或1.5mm的节距和相邻电极之间的额定2mil的间距。基板材料是具有1/4oz.包覆铜的FR-4。将铜图案化以形成控制电路、迹线和接触焊盘。该工艺所使用的额定最小的线宽/间距是2mil/2mil,其是在相邻电极之间所使用的间距以及在控制电极和接触焊盘之间的迹线宽度。液态感光阻焊掩模材料,CARAPACE 
Figure G06803222220070730D000251
EMP 110(可从Electra Polymer&Chemicals,Ltd.获得)用作电极绝缘体。阻焊掩模绝缘体的额定厚度是0.6mil。在从制造商收到PCB之后,将TEFLON 
Figure G06803222220070730D000252
AF薄疏水性涂层应用到芯片的顶面。通过在PCB表面上以3000rpm旋涂1%的FC-751溶液20秒,随后在150℃下固化30分钟而应用TEFLON 
Figure G06803222220070730D000253
AF。 
该PCB被设置成具有铟锡氧化物(ITO)涂覆的玻璃顶板的夹层。该顶板还涂覆有TEFLON 
Figure G06803222220070730D000254
AF薄层,因此所有与液滴接触的内表面都是疏水的。在顶板上的导电铟锡氧化物用作参考电极。PCB和顶板由  约为0.8mm的间隙所分隔。一个或多个电解质(0.1M KCl)的液滴被注入夹层结构,并且被沉积在控制电极上。液滴体积足够覆盖单个电极,并且对于1.5mm间距的电极液滴体积约为2.2μL,对于1mm电极液滴体积约为1.1μL。两板之间的剩余体积被空气或低粘滞度(1cSt.)硅酮油所填充。 
关于图6、7和10-12,执行了如在皆为Pamula等的美国专利No.6,911,132和美国专利申请公布No.2004/0058450内所描述的连续激活控制电极而引起的液滴的传输方面的测试。使用与如图6所示相似的PCB,在两个电极尺寸(1.0mm和1.5mm间距)中的每一个大小的四个不同电极形状(圆形16a、矩形16b、小曲率的星形16c、较大曲率的星形16d)上执行测试。 
如图10和11所示,对于每个电极尺寸和形状,将在相邻控制电极之间可传输液滴的最高率确定作为应用电压的函数。在低于40V的电压(对1.0mm电极尺寸)下,以随超过阈值的电压增加的传输速度成功传输液滴。由于使用较厚的阻焊掩模绝缘体,需要比在之前在其它系统中介绍的电压更高的电压用于驱动液滴。例如,阻焊掩模绝缘体大约比用于先前的微细加工器件的绝缘体厚16倍,从而由于传输机构依靠静电能(1/2CV2),需要大约4倍高的电压。 
如预想的一样,超出初始阈值电压,传输速度和最终液滴可能被转换的最高速度随电压增加。经测试的电压范围对于1.5mm电极大概是0-200V,对1.0mm电极大概是0-100V,并且观察到液滴传输率高达24Hz。结果测试曲线显示为预期普通的形状-应用电压越高可能的传输频率越高。然而,1.5mm电极的曲线(图10)不是十分平滑的,并且看起来具有电极形状的显著影响。或者,1.0mm电极的曲线(图11)是完全可预测的,并且不显示出对电极形状的大依赖性。此外,具有尺度效应,其中1.0mm电极的阈值电压在相应频率下的1.5mm电极的阈值电压低10-20V。 
如图12所图解示出,执行进一步的测试以确定液滴传输的时间稳定性。在保持在4Hz或8Hz的转换频率下传输所需最小电压下越过四个1.5mm矩形电极可编程地循环液滴。以5分钟间隔测试和调节用于连续传输的最小电压。执行了一个小时或以上的测试示出随时间增加的电压需求量的一般趋势,其大概归因于绝缘体的降解和绝缘体表面的污染。然而,在每个例子中,在试验过程中执行超过20000个循环的液滴操作。
参考图13所示图表,还执行测试以确定以给定转换频率传输液滴所需最小电压。使用在PCB上的开式结构(即没有顶板的共面结构)和限制结构(即具有顶板的双平面结构)的数字微流体芯片(分别见图1B和图4B)。在铜内将电极(1.5×1.5mm2)图案化至最终厚度~25μm。在每个电极内钻出150μm的过孔以为板的背面提供电接触。沿所有驱动电极将接地轨图案化以对液滴提供连续的接地连接,并且将液态感光(LPI)阻焊掩模(~17μm)图案化以作为绝缘体,仅暴露接地轨。作为仅有的后续工艺步骤,刷涂TEFLON 
Figure DEST_PATH_G19835788150138000D000021
AF以形成表面疏水性。在开式(共面)和限制(双平面)系统内都传输可极化且导电液体液滴(1M KCl)。对于开式系统,每个液滴的体积为6μl,并且添加硅酮油的小液滴(2μl)且看来环绕液滴。对于限制系统,每个液滴的体积为2.5μl,并且整个芯片填满硅酮油以促进传输。 
对于每个系统,以在从1Hz到32Hz内的转换频率范围测量成功传输液滴所需的最小驱动电压。如图13所图解示出,依赖于液滴的转换频率,在限制(双表面)和开式(共面)系统内的用于液滴的操作电压分别在范围140-260V和125-220V内。这似乎和易看出,可能由于未限制液滴经受减小的阻力,通过使用限制顶板促进了液滴的驱动。使用LPI阻焊掩模作为绝缘体,一般由绝缘体的不适当覆盖而引起的液滴的电解直到350V的最大测试电压都未观察到。然而,超过300V将发生绝缘体充电。 
参考图14A-14D,其为示出显示了液滴传输和混合的不同次序的延时图象的俯视图。图14A和图14C分别示出由顶板(600μm)(双平面)限制的液滴的液滴传输和混合。图14B和图14D分别示出在开式系统(共面)内的液滴的液滴传输和混合。在8Hz的转换频率下执行混合,并且对于两个2.5μl“受限”液滴在5秒内完成混合,对于两个在“开式”系统内的6μl液滴在1.8秒内完成混合。因此,  在开式(共面)系统内观察到的混合率(每单位时间内体积)差不多比在限制(双平面)系统内的混合率大七倍。因之前已经显示当液滴变薄时循环变差,该改良的混合可有助于在较厚液滴内提高循环。 
参考文献 
下面所列参考文献通过参考至这样的程度在此并入,即其在这里应用的技术和/或工艺进行补充、解释、提供背景或教授方法。在该应用中涉及到的所有引用的专利文献和出版物以参考的方式明确地合并到本发明中。 
M.G.Pollack,R.B.Fair,and A.D.Shenderov,″Electrowetting-basedactuation of liquid droplets for microfluidic actuation,″Appl.Phys.Lett.,vol.77,pp.1725-1726(2000). 
V.Srinivasan,V.K.Pamula,and R.B.Fair,″An integrated digitalmicrofluidic lab-on-a-chip for clinical diagnostics on humanphysiological fluids,″Lab Chip,4(4),310,(2004) 
B.Berge,and J.Peseux,″Variable focal lens controlled by anexternal voltage:An application of electrowetting,″The EuropeanPhysical Journal E,vol.3,p.159(2000). 
M.W.J.Prins,W.J.J.Welters,and J.W.Weekamp,″Fluid controlin multichannel structures by electrocapillary pressure,″Science,vol.291,pp.277-280(2001). 
T.Merkel,L.Pagel,and H.W.Glock,″Electric fields in fluidicchannels and sensor applications with capacitance,″Sensors andActuators A,vol.80,pp.1-7(2000). 
A.Wego,and L.Pagel,″A self-filling micropump based on PCBtechnology,″Sensors and Actuators A,vol.88,pp.220-226(2001). 
C.Laritz,and L.Pagel,″A microfluidic pH-regulation system basedon printed circuit board technology,″Sensors and Actuators A,vol.84,pp.230-235(2000). 
Li et al.,″Development of PDMS-based Microfluidic Device for  Cell-based Assays,″Chemical Journal of Chinese Universities,vol.25,no.1,pp 4-6(2004). 
A.Wego,S.Richter,L.Pagel,″Fluidic microsystems based on printedcircuit board technology,″Journal of Micromechanics andMicroengineering,vol.11,no.5,pp.528-531(September 2001). 
A.Wego,H.W.Glock,L.Pagel,and S.Richter,″Investigations onthermo-pneumatic volume actuators based on PCB technology,″Sensorsand Actuators A-Physical,vol.93,no.2,pp.95-102(Sep.30,2001). 
A.Wego and L.Pagel,″A self-filling micropump based on PCBtechnology,″Sensors and Actuators A-Physical,vol.88,no.3,pp.220-226(March 5,2001). 
C.Laritz and L.Pagel,″A microfluidic pH-regulation system basedon printed circuit board technology,″Sensors and Actuators A-Physical,vol.84,no.3,pp.230-235(Sep.1,2000). 
T.Merkel,M.Graeber,and L.Pagel,″A new technology for fluidicMicrosystems based on PCB technology,″Sensors and ActuatorsA-Physical,vol.77,no.2,pp.98-105(Oct.12,1999). 
N.T.Nguyen and X.Y.Huang,″Miniature valveless pumps based onprinted circuit board technique,″Sensors and Actuators A-Physical,vol.88,no.2,pp.104-111(Feb.15,2001). 
C.W.Li,C.N.Cheung,J.Yang,C.H.Tzang,and  M.S.Yang,″PDMS-based microfluidic device with multi-height structures fabricatedby single-step photolithography using printed circuit board as masters,″ Analyst,vol.128,no.9,pp.1137-1142(2003). 
A.P.Sudarsan and V.M.Ugaz,″Printed circuit technology forfabrication of plastic-based microfluidic devices,″Analytical Chemistryvol.76,no.11,pp.3229-3235(Jun.1,2004). 
G.Jobst,I.Moser,P.Svasek,M.Varahram,Z.Trajanoski,P.Wach,P.Kotanko,F.Skrabal,and G.Urban,″Mass producible miniaturized flowthrough a device with a biosensor array,″Sensors and Actuators B-Chemical,vol.43,pp.121-125(September1997). 
M.A.Unger,H.P.Chou,T.Thorsen,A.Scherer,S.R.Quake,″Monolithic Microfabricated Valves and Pumps by Multilayer SoftLithography,″Science,vol.288,pp.113-116(2000). 
A.R.Wheeler,H.Moon,C.A.Bird,R.R.Loo,C.J.Kim,J.A.Loo,R.L.Garrell,″Digital microfluidics with in-line sample purification forproteomics analyses with MALDI-MS,″Analytical Chemistry,vol.77,no.2,pp.534-40(2005). 
J.A.Schwartz,J.V.Vykoukal and P.R.C.Gascoyne,″Droplet-basedchemistry on a programmable micro-chip,″Lab on a Chip,vol.4,no.1,pp.11-17(2004). 
Y.Tan,J.S.Fisher,A.I.Lee,V.Cristini and A.P.Lee,″Design ofmicrofluidic channel geometries for the control of droplet volume,chemical concentration,and sorting,″Lab on a Chip,vol.4,no.4,pp.292-298(2004). 
J.D.Tice,A.D.Lyon,and R.F.Ismagilov,″Effects of viscosity ondroplet formation and mixing in microfluidic channels,″AnalyticaChimica Acta,vol.507,pp.73-77(2004). 
T.Merkel,L Pagel,H.Glock,″Electric fields in fluidic channels andsensor applications with capacitance″,Sensors and Actuators,vol.80,pp.1-7(2000). 
G.Medoro,N.Manaresi,A.Leonardi,L.Altomare,M.Tartagni andR.Guerrieri,″A Lab-on-a-Chip for Cell Detection and Manipulation″, IEEE Sensors Journal,vol.3,pp.317-325(2003). 
L.Altomare,M.Borgatti,G.Medoro,M.Manaresi,M.Tartagni,R.Guerrieri and R.Gambari,″Levitation and Movement of Human TumorCells Using a Printed Circuit Board Device Based onSoftware-Controlled Dielectrophoresis″,Biotechnology andBioengineering,vol.82,pp.474-479(2003). 
可以理解的是,可改变本发明的不同细节,而不偏离这里公开的  本发明的范围。此外,上述说明仅仅用于说明目的,而不是用于限定目的。 

Claims (52)

1.一种用于操作液滴的装置,所述装置包括:
(a)包括第一侧表面和第二侧表面的印刷电路板基板,所述第一侧表面和所述第二侧表面均被配置为具有通过用于在基板上实现电连接的印刷电路板方法制造于其上的导电迹线;
(b)配置在所述基板第一侧表面上的电极阵列;
(c)配置在所述基板第一侧表面上且被图案化以覆盖所述电极的电介质层;和
(d)电极选择器,其用于动态产生一连串阵列电极激活作用,从而电操作配置在所述基板第一侧表面上的液滴。
2.根据权利要求1所述的装置,其中所述印刷电路板基板包括被定义在其内且从所述基板第一侧表面延伸到所述基板第二侧表面的多个基板孔,并且每个电极包括电极孔,其中将每个电极孔与所述多个基板孔中的一个对准,以定义穿过所述装置的多个过孔,用于在所述基板的所述第一侧表面和所述第二侧表面之间实现电连接。
3.根据权利要求2所述的装置,其中所述过孔填满介电质。
4.根据权利要求2所述的装置,其中所述过孔填满树脂。
5.根据权利要求4所述的装置,其中所述树脂是导电环氧树脂或光透明环氧树脂。
6.根据权利要求1所述的装置,其中所述基板定义邻近所述电极阵列的至少一个所述电极的至少一个液滴输入口。
7.根据权利要求6所述的装置,其中所述至少一个液滴输入口与选自由挠性管、注射器、吸移管管理器、外部流体泵、玻璃毛细管、内部静脉线和微量渗析腔组成的群组的液体流源连通。
8.根据权利要求6所述的装置,其中所述基板邻近所述电极阵列的至少一个所述电极定义了至少一个液滴输出口。
9.根据权利要求8所示的装置,其中所述至少一个液滴输出口与选自由挠性管、注射器、吸移管管理器、外部流体泵、玻璃毛细管、内部静脉线和微量渗析腔组成的群组的液体流源连通。
10.根据权利要求3所述的装置,其中所述介电质是阻焊掩模材料、旋涂材料、可浸涂材料、可刷涂或可喷涂、可气相沉积或溅射材料。
11.根据权利要求10所述的装置,其中所述阻焊掩模材料选自由液态感光阻焊掩模(LPI)和干膜阻焊掩模(DFSS)组成的群组。
12.根据权利要求1所述的装置,还包括以操作方式连接到所述印刷电路板基板的电子组件,所述电子组件选自由微控制器、继电器、高压多路复用器、电压转换器、发光二极管(LED)、光电二极管、光电倍增管(PMT)、加热元件、热敏电阻器、电阻温度器件(RTD)和电化学测量电极组成的群组。
13.一种用于操作液滴的装置,所述装置包括:
(a)包括第一侧表面和第二侧表面的印刷电路板基板,所述第一侧表面和所述第二侧表面均被配置为具有通过用于在基板上实现电连接的印刷电路板方法制造于其上的导电迹线;
(b)配置在所述基板第一侧表面上的驱动电极阵列;
(c)可设定到共同参考电势的一个或多个参考元件的阵列,其以与所述驱动电极阵列至少基本上共面的关系配置;
(d)配置在所述基板第一侧表面上且被图案化以覆盖所述驱动电极的介电质层;
(e)电极选择器,其用于动态产生一连串阵列电极激活作用,从而电操作配置在所述基板第一侧表面上的液滴;以及
(f)所述印刷电路板基板包括被定义在其内的从所述基板第一侧表面延伸到所述基板第二侧表面的多个基板孔,作为过孔。
14.根据权利要求13所述的装置,其中每个驱动电极包括电极孔,并且其中将每个驱动电极孔与所述多个基板孔中的一个对准,以定义穿过所述装置的多个过孔。
15.根据权利要求14所述的装置,其中所述过孔填满介电质。
16.根据权利要求14所述的装置,其中所述过孔填满树脂。
17.根据权利要求16所述的装置,其中所述树脂是导电环氧树脂或光透明环氧树脂,用于在所述基板的所述第一侧表面和所述第二侧表面之间实现电连接。
18.根据权利要求13所述的装置,其中所述基板邻近电极阵列的至少一个电极定义至少一个液滴输入口。
19.根据权利要求18所述的装置,其中所述至少一个液滴输入口与选自由挠性管、注射器、吸移管管理器、外部流体泵、玻璃毛细管、内部静脉线和微量渗析腔组成的群组的液体流源连通。
20.根据权利要求18所述的装置,其中所述基板邻近电极阵列的至少一个电极定义了至少一个液滴输出口。
21.根据权利要求20所述的装置,其中所述至少一个液滴输出口与选自由挠性管、注射器、吸移管管理器、外部流体泵、玻璃毛细管、内部静脉线和微量渗析腔组成的群组的液体流源连通。
22.根据权利要求13所述的装置,其中所述参考元件的阵列包括细长结构的栅格。
23.根据权利要求22所述的装置,其中所述细长结构的栅格的高度至少等于配置在所述基板第一侧表面上的所述液滴的高度。
24.根据权利要求13所述的装置,其中所述介电质是阻焊掩模材料、旋涂材料、可浸涂材料、可刷涂或可喷涂、可气相沉积或溅射材料。
25.根据权利要求24所述的装置,其中所述阻焊掩模材料选自由液态感光阻焊掩模(LPI)和干膜阻焊掩模(DFSS)组成的群组。
26.根据权利要求13所述的装置,其进一步包括以操作方式连接到所述印刷电路板基板的电子组件,所述电子组件选自由微控制器、继电器、高压多路复用器、电压转换器、发光二极管(LED)、光电二极管、光电倍增管(PMT)、加热元件、热敏电阻器、电阻温度器件(RTD)和电化学测量电极组成的群组。
27.一种用于操作液滴的装置,所述装置包括:
(a)包括第一侧表面和第二侧表面的印刷电路板基板,所述第一侧表面和所述第二侧表面被配置为具有通过用于在基板上实现电连接的印刷电路板方法制造于其上的导电迹线;
(b)配置在所述基板第一侧表面上的驱动电极阵列;
(c)基本上平行于所述基板第一侧表面的细长的参考元件,其所述参考元件以一定距离与所述基板第一侧表面间隔,以在所述参考元件和所述基板第一侧表面之间定义一个空间,其中所述距离足够包含配置在所述空间内的液滴;
(d)配置在所述基板第一侧表面上且被图案化以覆盖所述驱动电极的介电质层;
(e)电极选择器,其用于动态产生一连串阵列电极激活作用,从而电操作配置在所述基板第一侧表面上的液滴;以及
(f)所述印刷电路板基板包括被定义在其内的从所述基板第一侧表面延伸到所述基板第二侧表面的多个基板孔,作为过孔。
28.根据权利要求27所述的装置,其中每个驱动电极包括电极孔,并且其中将每个驱动电极孔与多个基板孔中的一个对准,以定义穿过所述装置的多个过孔。
29.根据权利要求28所述的装置,其中所述过孔填满介电质。
30.根据权利要求28所述的装置,其中所述过孔填满树脂。
31.根据权利要求30所述的装置,其中所述树脂是导电环氧树脂或光透明环氧树脂,用于在所述基板的所述第一侧表面和所述第二侧表面之间实现电连接。
32.根据权利要求27所述的装置,其中所述基板定义邻近电极阵列的至少一个电极的至少一个液滴输入口。
33.根据权利要求32所述的装置,其中所述至少一个液滴输入口与选自由挠性管、注射器、吸移管管理器、外部流体泵、玻璃毛细管、内部静脉线和微量渗析腔组成的群组的液体流源连通。
34.根据权利要求32所述的装置,其中所述基板邻近电极阵列的至少一个电极定义了至少一个液滴输出口。
35.根据权利要求34所述的装置,其中所述至少一个液滴输出口与选自由挠性管、注射器、吸移管管理器、外部流体泵、玻璃毛细管、内部静脉线和微量渗析腔组成的群组的液体流源连通。
36.根据权利要求27所述的装置,其中所述细长参考元件是一个或多个导线阵列。
37.根据权利要求27所述的装置,其中所述细长参考元件是平板。
38.根据权利要求37所述的装置,其中所述参考元件平板包括面向所述基板表面的平板面,并且所述平板面是疏水性的。
39.根据权利要求27所述的装置,其中所述介电质是阻焊掩模材料、旋涂材料、可浸涂材料、可刷涂或可喷涂、可气相沉积或溅射材料。
40.根据权利要求39所述的装置,其中所述阻焊掩模材料选自由液态感光阻焊掩模(LPI)和干膜阻焊掩模(DFSS)组成的群组。
41.根据权利要求27所述的装置,还包括以操作方式连接到所述印刷电路板基板的电子组件,所述电子组件选自由微控制器、继电器、高压多路复用器、电压转换器、发光二极管(LED)、光电二极管、光电倍增管(PMT)、加热元件、热敏电阻器、电阻温度器件(RTD)和电化学测量电极组成的群组。
42.一种用于操作液滴的装置,所述装置包括:
(a)包括第一侧表面和第二侧表面的第一印刷电路板基板,所述第一侧表面和所述第二侧表面均被配置为具有通过用于在基板上实现电连接的印刷电路板方法制造于其上的导电迹线;
(b)配置在所述第一印刷电路板基板的第一侧表面上的驱动电极阵列;
(c)配置在所述第一印刷电路板基板的第一侧表面上并被图案化以覆盖所述驱动电极的介电质层;
(d)包括第一侧表面和第二侧表面的第二印刷电路板基板,所述第一侧表面和所述第二侧表面均被配置为具有通过用于在基板上实现电连接的印刷电路板方法制造于其上的导电迹线,所述第二印刷电路板基板基本上平行于所述第一印刷电路板基板,并且以一定距离与所述第一印刷电路板基板间隔,以在所述第二印刷电路板基板的第二侧表面和所述第一印刷电路板基板的第一侧表面之间定义一个空间,其中所述距离足够包含配置在所述空间内的液滴;
(e)配置在所述第二印刷电路板基板的第二侧表面上的驱动电极阵列和一个或多个参考元件的阵列;以及
(f)电极选择器,其用于动态产生一连串阵列电极激活作用,从而电操作配置在所述第一印刷电路板基板的第一侧表面和所述第二印刷电路板基板的第二侧表面之间的液滴。
43.一种用于驱动液滴的方法,所述方法包括步骤:
(a)在印刷电路板基板的表面上提供液滴,所述表面被配置为具有通过用于在基板上实现电连接的印刷电路板方法制造于其上的导电迹线,并且所述表面包括电极阵列,其中所述液滴最初配置在所述电极的第一个上,并且所述液滴邻近于以第一间隔与第一个电极分隔的第二个电极;
(b)将所述第一个电极偏置到第一电压,将所述第二个电极偏置到不同于所述第一电压的第二电压,因此所述液滴朝向所述第二电极移动。
44.根据权利要求43所述的方法,其中所述第二电压是接地状态。
45.根据权利要求43所述的方法,其中所述第一电压和所述第二电压是DC或AC。
46.一种用于驱动液滴的方法,所述方法包括:
(a)在印刷电路板基板的表面上提供液滴,所述表面被配置为具有通过用于在基板上实现电连接的印刷电路板方法制造于其上的导电迹线,并且所述表面包括驱动电极阵列和一个或多个参考元件的至少基本上共面的阵列,其中所述液滴配置在所述驱动电极的第一个上;以及
(b)偏置所述第一个驱动电极,以将所述液滴从所述第一个驱动电极移动到第二个驱动电极。
47.根据权利要求46所述的方法,其中所述第二个驱动电极沿第一方向邻近于所述第一个驱动电极,所述电极阵列包括一个或多个沿一个或多个附加方向邻近于所述第一个驱动电极的附加电极,所述液滴邻近于所述一个或多个附加电极,所述方法包括步骤:
(a)选择所述第一方向作为预期方向,所述液滴将沿所述预期方向移动;和
(b)基于所述第一方向的选取选择用于偏置的所述第二个驱动电极。
48.一种用于驱动液滴的方法,所述方法包括:
(a)在印刷电路板基板的表面和基本上平行于所述印刷电路板表面并与所述印刷电路板表面间隔的细长的参考元件之间提供液滴,其中所述印刷电路板表面被配置为具有通过用于在基板上实现电连接的印刷电路板方法制造于其上的导电迹线,并且所述印刷电路板表面包括驱动电极阵列,并且所述液滴配置在所述驱动电极的第一个上;以及
(b)偏置所述第一个驱动电极,以将所述液滴从所述第一个驱动电极移动到第二个驱动电极。
49.一种用于驱动液滴的方法,所述方法包括:
(a)在第一印刷电路板基板的表面和基本平行于所述印刷电路板并与所述印刷电路板间隔的第二印刷电路板基板的表面之间提供液滴,其中所述第一印刷电路板表面被配置为具有通过用于在基板上实现电连接的印刷电路板方法制造于其上的导电迹线,并且所述第一印刷电路板表面包括驱动电极阵列且所述液滴配置在所述驱动电极的第一个上,此外,其中所述第二印刷电路板表面被配置为具有通过用于在基板上实现电连接的印刷电路板方法制造于其上的导电迹线,并且所述第二印刷电路板表面包括驱动电极阵列和一个或多个参考元件的阵列;以及
(b)偏置所述第一个驱动电极,以将所述液滴从所述第一个驱动电极移动到第二个驱动电极。
50.一种用于将两个或更多液滴合并成一个液滴的方法,包括步骤:
(a)在印刷电路板基板的表面上提供第一和第二液滴,所述表面被配置为具有通过用于在基板上实现电连接的印刷电路板方法制造于其上的导电迹线,并且所述表面包括电极阵列,其中所述电极阵列包括包含第一外电极、邻近于所述第一外电极的中间电极和邻近于所述中间电极的第二外电极的至少三个电极,所述第一液滴配置在所述第一外电极上,并且所述第一液滴邻近于所述中间电极,所述第二液滴配置在所述第二外电极上,并且所述第二液滴邻近于所述中间电极;
(b)选择所述三个电极中的一个作为目标电极;
(c)选择所述三个电极中的两个或更多用于基于所述目标电极的选取而激活和停用;和
(d)激活和停用所选电极以将所述第一和第二液滴中的一个液滴移向另一个液滴或使所述第一和第二液滴朝向彼此移动,因此所述第一和第二液滴合并在一起,以在所述目标电极上形成结合的液滴。
51.一种用于将液滴分离成两个或更多液滴的方法,包括步骤:
(a)在印刷电路板基板的表面上提供初始液滴,所述表面被配置为具有通过用于在基板上实现电连接的印刷电路板方法制造于其上的导电迹线,并且所述表面包括电极阵列,其中所述电极阵列包括至少三个电极,所述至少三个电极包括第一外电极、邻近于所述第一外电极的中间电极和邻近于所述中间电极的第二外电极,并且所述初始液滴最初配置在所述三个电极中的至少一个上,并且所述初始液滴邻近于所述三个电极中的至少另一个;
(b)将所述三个电极中的每一个偏置到第一电压以在所述三个电极上定位所述初始液滴;以及
(c)将所述中间电极偏置到不同于所述第一电压的第二电压,以将所述初始液滴分离成第一和第二分裂液滴,因此在所述第一外电极上形成所述第一分裂液滴,在所述第二外电极上形成所述第二分裂液滴。
52.一种用于将液滴分离成两个或更多液滴的方法,包括步骤:
(a)在印刷电路板基板的表面上提供初始液滴,所述表面被配置为具有通过用于在基板上实现电连接的印刷电路板方法制造于其上的导电迹线,并且所述表面包括电极阵列,其中所述电极阵列包括包含第一外电极、邻近于所述第一外电极的中间电极和邻近于所述中间电极的第二外电极的至少三个电极,并且所述初始液滴最初配置在所述三个电极中的至少一个上,并且所述初始液滴至少与所述三个电极中的另外一个部分交迭;
(b)将所述所述中间电极偏置到第一电压以定位所述初始液滴,因此所述初始液滴至少与所述三个电极部分交迭;和
(c)将所述中间电极偏置到第二电压,并将所述第一和第二外电极的至少一个偏置到第三电压,所述第二和第三电压不同于所述第一电压,以将所述初始液滴分离成第一和第二分裂液滴,因此在所述第一外电极上形成所述第一分裂液滴,在所述第二外电极上形成所述第二分裂液滴。
CN2006800032222A 2005-01-28 2006-01-30 用于在印刷电路板上操作液滴的装置和方法 Expired - Fee Related CN101146595B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US64805105P 2005-01-28 2005-01-28
US60/648,051 2005-01-28
PCT/US2006/003230 WO2006081558A2 (en) 2005-01-28 2006-01-30 Apparatuses and methods for manipulating droplets on a printed circuit board

Publications (2)

Publication Number Publication Date
CN101146595A CN101146595A (zh) 2008-03-19
CN101146595B true CN101146595B (zh) 2012-07-04

Family

ID=36741149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800032222A Expired - Fee Related CN101146595B (zh) 2005-01-28 2006-01-30 用于在印刷电路板上操作液滴的装置和方法

Country Status (13)

Country Link
US (6) US8349276B2 (zh)
EP (1) EP1859330B1 (zh)
JP (2) JP5897780B2 (zh)
KR (1) KR101198038B1 (zh)
CN (1) CN101146595B (zh)
AU (1) AU2006207933B2 (zh)
BR (1) BRPI0607213B1 (zh)
CA (1) CA2594483C (zh)
DK (1) DK1859330T3 (zh)
ES (1) ES2390800T3 (zh)
HK (1) HK1110826A1 (zh)
PL (1) PL1859330T3 (zh)
WO (1) WO2006081558A2 (zh)

Families Citing this family (242)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10162188A1 (de) * 2001-12-17 2003-06-18 Sunyx Surface Nanotechnologies Hydrophobe Oberfläche mit einer Vielzahl von Elektroden
US6911132B2 (en) 2002-09-24 2005-06-28 Duke University Apparatus for manipulating droplets by electrowetting-based techniques
US7329545B2 (en) 2002-09-24 2008-02-12 Duke University Methods for sampling a liquid flow
PL1859330T3 (pl) 2005-01-28 2013-01-31 Univ Duke Urządzenia i sposoby manipulacji kropelkami na płytkach obwodów drukowanych
JP2008539759A (ja) 2005-05-11 2008-11-20 ナノリティックス・インコーポレイテッド 多数の温度で生化学的又は化学的な反応を実施する方法及び装置
JP4923494B2 (ja) * 2005-09-22 2012-04-25 富士通株式会社 多層回路基板設計支援方法、プログラム、装置及び多層回路基板
FR2890875B1 (fr) * 2005-09-22 2008-02-22 Commissariat Energie Atomique Fabrication d'un systeme diphasique liquide/liquide ou gaz en micro-fluidique
GB0601703D0 (en) * 2006-01-27 2006-03-08 Intellitect Water Ltd Improvement To The Design And Construction Of Electrochemical Sensors
US20140193807A1 (en) 2006-04-18 2014-07-10 Advanced Liquid Logic, Inc. Bead manipulation techniques
US9476856B2 (en) 2006-04-13 2016-10-25 Advanced Liquid Logic, Inc. Droplet-based affinity assays
US8389297B2 (en) 2006-04-18 2013-03-05 Duke University Droplet-based affinity assay device and system
US8716015B2 (en) * 2006-04-18 2014-05-06 Advanced Liquid Logic, Inc. Manipulation of cells on a droplet actuator
US8809068B2 (en) * 2006-04-18 2014-08-19 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
WO2007123908A2 (en) * 2006-04-18 2007-11-01 Advanced Liquid Logic, Inc. Droplet-based multiwell operations
US8637324B2 (en) 2006-04-18 2014-01-28 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US7901947B2 (en) 2006-04-18 2011-03-08 Advanced Liquid Logic, Inc. Droplet-based particle sorting
US8658111B2 (en) * 2006-04-18 2014-02-25 Advanced Liquid Logic, Inc. Droplet actuators, modified fluids and methods
US7439014B2 (en) * 2006-04-18 2008-10-21 Advanced Liquid Logic, Inc. Droplet-based surface modification and washing
US8980198B2 (en) 2006-04-18 2015-03-17 Advanced Liquid Logic, Inc. Filler fluids for droplet operations
US10078078B2 (en) 2006-04-18 2018-09-18 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
WO2009111769A2 (en) 2008-03-07 2009-09-11 Advanced Liquid Logic, Inc. Reagent and sample preparation and loading on a fluidic device
TWI327361B (en) * 2006-07-28 2010-07-11 Unimicron Technology Corp Circuit board structure having passive component and stack structure thereof
US8173071B2 (en) 2006-08-29 2012-05-08 International Business Machines Corporation Micro-fluidic test apparatus and method
WO2008055256A2 (en) * 2006-11-02 2008-05-08 The Regents Of The University Of California Method and apparatus for real-time feedback control of electrical manipulation of droplets on chip
US20090002796A1 (en) * 2006-11-28 2009-01-01 Mansell, Justin D. Electrostatic snap-down prevention for membrane deformable mirrors
GB2445738A (en) * 2007-01-16 2008-07-23 Lab901 Ltd Microfluidic device
US8685344B2 (en) 2007-01-22 2014-04-01 Advanced Liquid Logic, Inc. Surface assisted fluid loading and droplet dispensing
CA2712863C (en) 2007-02-09 2015-01-06 Advanced Liquid Logic, Inc. Droplet actuator devices and methods employing magnetic beads
EP2109774B1 (en) 2007-02-15 2018-07-04 Advanced Liquid Logic, Inc. Capacitance detection in a droplet actuator
US8345253B2 (en) * 2007-02-21 2013-01-01 The Royal Institution for the Advancement of Learning/McGill University and Her Majesty the Queen in Right of Canada System and method for surface plasmon resonance based detection of molecules
WO2008106678A1 (en) * 2007-03-01 2008-09-04 Advanced Liquid Logic, Inc. Droplet actuator structures
WO2008109664A1 (en) * 2007-03-05 2008-09-12 Advanced Liquid Logic, Inc. Hydrogen peroxide droplet-based assays
EP2837692A1 (en) 2007-03-22 2015-02-18 Advanced Liquid Logic, Inc. Enzymatic assays for a droplet actuator
WO2011084703A2 (en) 2009-12-21 2011-07-14 Advanced Liquid Logic, Inc. Enzyme assays on a droplet actuator
US8202686B2 (en) 2007-03-22 2012-06-19 Advanced Liquid Logic, Inc. Enzyme assays for a droplet actuator
AU2008237017B2 (en) * 2007-04-10 2013-10-24 Advanced Liquid Logic, Inc. Droplet dispensing device and methods
WO2010009463A2 (en) * 2008-07-18 2010-01-21 Advanced Liquid Logic, Inc. Droplet operations device
US8951732B2 (en) 2007-06-22 2015-02-10 Advanced Liquid Logic, Inc. Droplet-based nucleic acid amplification in a temperature gradient
WO2009021233A2 (en) * 2007-08-09 2009-02-12 Advanced Liquid Logic, Inc. Pcb droplet actuator fabrication
CA2696604A1 (en) * 2007-08-24 2009-03-05 Advanced Liquid Logic, Inc. Bead manipulations on a droplet actuator
US8702938B2 (en) 2007-09-04 2014-04-22 Advanced Liquid Logic, Inc. Droplet actuator with improved top substrate
WO2009052123A2 (en) * 2007-10-17 2009-04-23 Advanced Liquid Logic, Inc. Multiplexed detection schemes for a droplet actuator
US8454905B2 (en) * 2007-10-17 2013-06-04 Advanced Liquid Logic Inc. Droplet actuator structures
US8460528B2 (en) * 2007-10-17 2013-06-11 Advanced Liquid Logic Inc. Reagent storage and reconstitution for a droplet actuator
US20100236929A1 (en) * 2007-10-18 2010-09-23 Advanced Liquid Logic, Inc. Droplet Actuators, Systems and Methods
US20090127113A1 (en) * 2007-11-15 2009-05-21 Chien-Hsing Chen Microfluidic detector and manufacturing method
EP2232535A4 (en) * 2007-12-10 2016-04-13 Advanced Liquid Logic Inc DROPLET ACTUATOR CONFIGURATIONS AND METHODS
JP5462183B2 (ja) * 2007-12-23 2014-04-02 アドヴァンスト リキッド ロジック インコーポレイテッド 液滴動作を導く液滴アクチュエータ構成及び方法
US8020775B2 (en) * 2007-12-24 2011-09-20 Dynamics Inc. Payment cards and devices with enhanced magnetic emulators
JP2011514528A (ja) * 2008-03-04 2011-05-06 ウオーターズ・テクノロジーズ・コーポレイシヨン デジタルマイクロ流体デバイスとのインターフェース
WO2009133499A2 (en) * 2008-04-28 2009-11-05 Nxp B.V. Microfluidic pump
WO2009137415A2 (en) 2008-05-03 2009-11-12 Advanced Liquid Logic, Inc. Reagent and sample preparation, loading, and storage
US20110097763A1 (en) * 2008-05-13 2011-04-28 Advanced Liquid Logic, Inc. Thermal Cycling Method
EP2286228B1 (en) 2008-05-16 2019-04-03 Advanced Liquid Logic, Inc. Droplet actuator devices and methods for manipulating beads
US7943862B2 (en) * 2008-08-20 2011-05-17 Electro Scientific Industries, Inc. Method and apparatus for optically transparent via filling
CH700127A1 (de) 2008-12-17 2010-06-30 Tecan Trading Ag System und Vorrichtung zur Aufarbeitung biologischer Proben und zur Manipulation von Flüssigkeiten mit biologischen Proben.
US8877512B2 (en) * 2009-01-23 2014-11-04 Advanced Liquid Logic, Inc. Bubble formation techniques using physical or chemical features to retain a gas bubble within a droplet actuator
US10066977B2 (en) 2009-01-26 2018-09-04 Canon U.S. Life Sciences, Inc. Microfluidic flow monitoring
US9404152B2 (en) 2009-01-26 2016-08-02 Canon U.S. Life Sciences, Inc. Microfluidic flow monitoring
US8264249B2 (en) * 2009-08-02 2012-09-11 Chunghwa Precision Test Tech. Co., Ltd. Vertical probe card
US8926065B2 (en) 2009-08-14 2015-01-06 Advanced Liquid Logic, Inc. Droplet actuator devices and methods
FR2950133B1 (fr) * 2009-09-14 2011-12-09 Commissariat Energie Atomique Dispositif d'echange thermique a efficacite amelioree
US8846414B2 (en) 2009-09-29 2014-09-30 Advanced Liquid Logic, Inc. Detection of cardiac markers on a droplet actuator
WO2011057197A2 (en) 2009-11-06 2011-05-12 Advanced Liquid Logic, Inc. Integrated droplet actuator for gel electrophoresis and molecular analysis
TWI399488B (zh) * 2009-12-31 2013-06-21 Nat Univ Chung Cheng 微流體驅動裝置
US8734628B2 (en) * 2010-03-10 2014-05-27 Empire Technology Development, Llc Microfluidic channel device with array of drive electrodes
EP2553473A4 (en) 2010-03-30 2016-08-10 Advanced Liquid Logic Inc DROPLET OPERATION PLATFORM
US20190300945A1 (en) 2010-04-05 2019-10-03 Prognosys Biosciences, Inc. Spatially Encoded Biological Assays
US9371598B2 (en) 2010-04-05 2016-06-21 Prognosys Biosciences, Inc. Spatially encoded biological assays
US10787701B2 (en) 2010-04-05 2020-09-29 Prognosys Biosciences, Inc. Spatially encoded biological assays
US10232374B2 (en) 2010-05-05 2019-03-19 Miroculus Inc. Method of processing dried samples using digital microfluidic device
CN102237481B (zh) * 2010-05-07 2013-01-16 佛山市国星光电股份有限公司 一种表面贴装型功率led支架制造方法及其产品
EP2588322B1 (en) 2010-06-30 2015-06-17 Advanced Liquid Logic, Inc. Droplet actuator assemblies and methods of making same
EP2619329B1 (en) 2010-09-24 2019-05-22 The Board of Trustees of The Leland Stanford Junior University Direct capture, amplification and sequencing of target dna using immobilized primers
EP3839064A1 (en) 2010-12-27 2021-06-23 Abbott Molecular Inc. Systems for quantitating high titer samples by digital pcr
WO2012102701A1 (en) * 2011-01-25 2012-08-02 Hewlett-Packard Development Company, L.P. Capacitive fluid level sensing
CN102671722B (zh) * 2011-02-17 2015-03-11 王崇智 基于微电极阵列结构的现场可编程芯片实验室
CN102671724B (zh) * 2011-02-17 2015-03-11 王崇智 微电极阵列结构
US20120231464A1 (en) * 2011-03-10 2012-09-13 Instrument Technology Research Center, National Applied Research Laboratories Heatable Droplet Device
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
CA2833897C (en) 2011-05-09 2020-05-19 Advanced Liquid Logic, Inc. Microfluidic feedback using impedance detection
WO2012154794A2 (en) 2011-05-10 2012-11-15 Advanced Liquid Logic, Inc. Enzyme concentration and assays
US8901043B2 (en) 2011-07-06 2014-12-02 Advanced Liquid Logic, Inc. Systems for and methods of hybrid pyrosequencing
CA2840949A1 (en) 2011-07-06 2013-01-10 Advanced Liquid Logic Inc Reagent storage on a droplet actuator
US9513253B2 (en) 2011-07-11 2016-12-06 Advanced Liquid Logic, Inc. Droplet actuators and techniques for droplet-based enzymatic assays
US9857332B2 (en) 2011-07-22 2018-01-02 Tecan Trading Ag System for manipulating samples in liquid droplets
US9435765B2 (en) 2011-07-22 2016-09-06 Tecan Trading Ag Cartridge and system for manipulating samples in liquid droplets
US8470153B2 (en) 2011-07-22 2013-06-25 Tecan Trading Ag Cartridge and system for manipulating samples in liquid droplets
WO2013016413A2 (en) 2011-07-25 2013-01-31 Advanced Liquid Logic Inc Droplet actuator apparatus and system
US8980075B2 (en) 2011-07-29 2015-03-17 The Texas A & M University System Digital microfluidic platform for actuating and heating individual liquid droplets
CA2854023A1 (en) 2011-11-07 2013-05-16 Illumina, Inc. Integrated sequencing apparatuses and methods of use
US10731199B2 (en) 2011-11-21 2020-08-04 Advanced Liquid Logic, Inc. Glucose-6-phosphate dehydrogenase assays
US10724988B2 (en) 2011-11-25 2020-07-28 Tecan Trading Ag Digital microfluidics system with swappable PCB's
US9377439B2 (en) 2011-11-25 2016-06-28 Tecan Trading Ag Disposable cartridge for microfluidics system
US8808519B2 (en) * 2011-12-14 2014-08-19 Hamilton Sundstrand Space Systems International Microfluidic device
CA2863121A1 (en) 2011-12-30 2013-07-04 Abbott Molecular Inc. Microorganism nucleic acid purification from host samples
GB201202519D0 (en) 2012-02-13 2012-03-28 Oxford Nanopore Tech Ltd Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
US8992183B2 (en) * 2012-02-17 2015-03-31 Cornell University System and methods for moving objects individually and in parallel
JP6102916B2 (ja) * 2012-03-30 2017-03-29 日本電気株式会社 リチウムイオン二次電池
US9223317B2 (en) 2012-06-14 2015-12-29 Advanced Liquid Logic, Inc. Droplet actuators that include molecular barrier coatings
WO2014004908A1 (en) 2012-06-27 2014-01-03 Advanced Liquid Logic Inc. Techniques and droplet actuator designs for reducing bubble formation
US8764958B2 (en) * 2012-08-24 2014-07-01 Gary Chorng-Jyh Wang High-voltage microfluidic droplets actuation by low-voltage fabrication technologies
EP2703817A1 (en) * 2012-09-03 2014-03-05 Celoxio AB On chip control of fluids using electrodes
WO2014062551A1 (en) 2012-10-15 2014-04-24 Advanced Liquid Logic, Inc. Digital microfluidics cartridge and system for operating a flow cell
JP1628115S (zh) 2012-10-24 2019-04-01
US20140322706A1 (en) 2012-10-24 2014-10-30 Jon Faiz Kayyem Integrated multipelx target analysis
US9090459B2 (en) * 2012-11-30 2015-07-28 Harris Corporation Control circuitry routing configuration for MEMS devices
US9630176B2 (en) 2013-01-09 2017-04-25 Tecan Trading Ag Microfluidics systems with waste hollow
WO2014187488A1 (en) * 2013-05-23 2014-11-27 Tecan Trading Ag Digital microfluidics system with swappable pcb`s
EP2943278B1 (en) 2013-01-09 2019-02-20 Tecan Trading AG Cartridge and system for manipulating samples in liquid droplets
CN104994955B (zh) 2013-01-09 2017-09-26 泰肯贸易股份公司 用于操纵液滴中的样品的系统
US9805407B2 (en) 2013-01-25 2017-10-31 Illumina, Inc. Methods and systems for using a cloud computing environment to configure and sell a biological sample preparation cartridge and share related data
EP2931425B1 (en) * 2013-03-04 2021-03-24 Tecan Trading AG Manipulating the size of liquid droplets in digital microfluidics
WO2014135864A1 (en) * 2013-03-05 2014-09-12 Micromass Uk Limited Charging plate for enhancing multiply charged ions by laser desorption
US9048222B2 (en) 2013-03-06 2015-06-02 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating interconnect structure for package-on-package devices
EP3520895A1 (en) 2013-03-15 2019-08-07 Genmark Diagnostics Inc. Fluid container with cantilevered lance
US9113829B2 (en) 2013-03-27 2015-08-25 Google Inc. Systems and methods for encapsulating electronics in a mountable device
EP3013983B1 (en) 2013-06-25 2023-02-15 Prognosys Biosciences, Inc. Spatially encoded biological assays using a microfluidic device
CN103412024B (zh) * 2013-07-05 2016-01-20 复旦大学 一种集成电化学传感芯片
WO2015013332A1 (en) * 2013-07-22 2015-01-29 President And Fellows Of Harvard College Microfluidic cartridge assembly
EP3033599A4 (en) 2013-08-13 2017-03-22 Advanced Liquid Logic, Inc. Methods of improving accuracy and precision of droplet metering using an on-actuator reservoir as the fluid input
JP2016539343A (ja) 2013-08-30 2016-12-15 イルミナ インコーポレイテッド 親水性または斑状親水性表面上の液滴の操作
CA2927289C (en) * 2013-10-23 2022-03-29 The Governing Council Of The University Of Toronto Printed digital microfluidic devices methods of use and manufacture thereof
USD881409S1 (en) 2013-10-24 2020-04-14 Genmark Diagnostics, Inc. Biochip cartridge
US9498778B2 (en) 2014-11-11 2016-11-22 Genmark Diagnostics, Inc. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system
US20150140671A1 (en) * 2013-11-18 2015-05-21 Johnson Electric S.A. Method and system for assembling a microfluidic sensor
US9691693B2 (en) * 2013-12-04 2017-06-27 Invensas Corporation Carrier-less silicon interposer using photo patterned polymer as substrate
US9583420B2 (en) 2015-01-23 2017-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of manufactures
WO2015125158A2 (en) * 2014-02-21 2015-08-27 Shilps Sciences Private Limited A micro-droplet array for multiple screening of a sample
JP2015169432A (ja) * 2014-03-04 2015-09-28 ソニー株式会社 電気的測定用カートリッジ、並びに電気的測定装置及び電気的測定方法
US9281297B2 (en) 2014-03-07 2016-03-08 Taiwan Semiconductor Manufacturing Company, Ltd. Solution for reducing poor contact in info packages
SG11201609053YA (en) 2014-04-29 2016-11-29 Illumina Inc Multiplexed single cell gene expression analysis using template switch and tagmentation
US9449947B2 (en) * 2014-07-01 2016-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package for thermal dissipation
KR101527768B1 (ko) * 2014-09-10 2015-06-12 주식회사 엑세스바이오코리아 미세유체 칩 및 진단기기
CA2960721C (en) 2014-10-09 2023-09-05 Illumina, Inc. Method and device for separating immiscible liquids to effectively isolate at least one of the liquids
US9598722B2 (en) 2014-11-11 2017-03-21 Genmark Diagnostics, Inc. Cartridge for performing assays in a closed sample preparation and reaction system
EP3831481A1 (en) 2014-11-11 2021-06-09 Genmark Diagnostics Inc. Instrument and cartridge for performing assays in a closed sample preparation and reaction system
US10005080B2 (en) 2014-11-11 2018-06-26 Genmark Diagnostics, Inc. Instrument and cartridge for performing assays in a closed sample preparation and reaction system employing electrowetting fluid manipulation
JP6514776B2 (ja) 2014-12-08 2019-05-15 バークレー ライツ,インコーポレイテッド 横方向/垂直方向トランジスタ構造を含むマイクロ流体デバイスならびにそれを作製および使用するプロセス
TWI700125B (zh) 2014-12-10 2020-08-01 美商柏克萊燈光有限公司 用於操作電氣動力裝置之系統
CN114958990A (zh) 2014-12-31 2022-08-30 维斯比医学公司 使用分子诊断测试装置检测靶核酸的方法
GB2533953A (en) * 2015-01-08 2016-07-13 Sharp Kk Active matrix device and method of driving
KR20210135626A (ko) 2015-02-10 2021-11-15 일루미나, 인코포레이티드 세포 성분을 분석하기 위한 방법 및 조성물
US10576471B2 (en) 2015-03-20 2020-03-03 Illumina, Inc. Fluidics cartridge for use in the vertical or substantially vertical position
FI3901281T3 (fi) 2015-04-10 2023-01-31 Biologisten näytteiden spatiaalisesti eroteltu moninkertainen nukleiinihappoanalyysi
US9841402B2 (en) 2015-04-15 2017-12-12 Sharp Life Science (Eu) Limited Multifunction electrode with combined heating and EWOD drive functionality
SG11201708429WA (en) 2015-04-22 2017-11-29 Berkeley Lights Inc Microfluidic cell culture
DK3294911T3 (da) 2015-05-11 2020-11-16 Illumina Inc Platform til opdagelse og analyse af terapeutiske midler
CN108026494A (zh) 2015-06-05 2018-05-11 米罗库鲁斯公司 限制蒸发和表面结垢的空气基质数字微流控装置和方法
CN208562324U (zh) 2015-06-05 2019-03-01 米罗库鲁斯公司 空气基质数字微流控(dmf)装置
US10519493B2 (en) 2015-06-22 2019-12-31 Fluxergy, Llc Apparatus and method for image analysis of a fluid sample undergoing a polymerase chain reaction (PCR)
WO2016209734A1 (en) 2015-06-22 2016-12-29 Fluxergy, Llc Device for analyzing a fluid sample and use of test card with same
US10214772B2 (en) 2015-06-22 2019-02-26 Fluxergy, Llc Test card for assay and method of manufacturing same
WO2017007757A1 (en) 2015-07-06 2017-01-12 Illumina, Inc. Balanced ac modulation for driving droplet operations electrodes
US20170013715A1 (en) 2015-07-10 2017-01-12 Rohde & Schwarz Gmbh & Co. Kg Printed circuit board and corresponding method for producing a printed circuit board
US10955411B2 (en) 2015-08-04 2021-03-23 Psomagen, Inc. Manipulation of sample droplets with an electrode system
US11512348B2 (en) 2015-08-14 2022-11-29 Illumina, Inc. Systems and methods using magnetically-responsive sensors for determining a genetic characteristic
WO2017040306A1 (en) 2015-08-28 2017-03-09 Illumina, Inc. Nucleic acid sequence analysis from single cells
CN107921432A (zh) 2015-09-02 2018-04-17 伊卢米纳剑桥有限公司 改善流控系统中的液滴操作的系统和方法
US20190217300A1 (en) 2015-10-22 2019-07-18 Illumina, Inc. Filler fluid for fluidic devices
US10799865B2 (en) 2015-10-27 2020-10-13 Berkeley Lights, Inc. Microfluidic apparatus having an optimized electrowetting surface and related systems and methods
US10675627B2 (en) * 2015-11-17 2020-06-09 The Regents Of The University Of California Ferromagnet infused microstructure array
ES2875759T3 (es) 2015-12-01 2021-11-11 Illumina Inc Sistema microfluídico digital para aislamiento de células individuales y caracterización de analitos
WO2017095845A1 (en) 2015-12-01 2017-06-08 Illumina, Inc. Liquid storage and delivery mechanisms and methods
WO2017127505A1 (en) 2016-01-20 2017-07-27 The Regents Of The University Of California Methods for fluid manipulation by electrodewetting
WO2017165535A1 (en) * 2016-03-24 2017-09-28 Kansas State University Research Foundation Integrated dielectric elastomeric actuators
CA3016221C (en) 2016-04-07 2021-09-28 Illumina, Inc. Methods and systems for construction of normalized nucleic acid libraries
WO2017185067A1 (en) 2016-04-22 2017-10-26 Click Diagnostics, Inc. Printed circuit board heater for an amplification module
WO2017197040A1 (en) 2016-05-11 2017-11-16 Click Diagnostics, Inc. Devices and methods for nucleic acid extraction
IL263274B2 (en) 2016-05-26 2023-10-01 Berkeley Lights Inc Covalently adapted surfaces, kits and methods for their production and uses
US10543466B2 (en) 2016-06-29 2020-01-28 Digital Biosystems High resolution temperature profile creation in a digital microfluidic device
GB201611770D0 (en) 2016-07-06 2016-08-17 Oxford Nanopore Tech Microfluidic device
CN109715781A (zh) 2016-08-22 2019-05-03 米罗库鲁斯公司 用于数字微流控设备中的并行液滴控制的反馈系统
CA3036572A1 (en) 2016-09-19 2018-03-22 Genmark Diagnostics, Inc. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system
WO2018093779A2 (en) * 2016-11-18 2018-05-24 Digital Biosystems Digital microfluidic devices
KR102551430B1 (ko) 2016-12-01 2023-07-05 버클리 라잇츠, 인크. 미세-객체들을 이미징하기 위한 장치들, 시스템들 및 방법들
WO2018126082A1 (en) 2016-12-28 2018-07-05 Miroculis Inc. Digital microfluidic devices and methods
US11623219B2 (en) 2017-04-04 2023-04-11 Miroculus Inc. Digital microfluidics apparatuses and methods for manipulating and processing encapsulated droplets
WO2018194665A1 (en) 2017-04-21 2018-10-25 Hewlett-Packard Development Company, L.P. Microfluidic chip
EP3582892A4 (en) 2017-04-21 2020-03-04 Hewlett-Packard Development Company, L.P. COPLANAR MICROFLUIDIC HANDLING
WO2018194651A1 (en) 2017-04-21 2018-10-25 Hewlett-Packard Development Company, Coplanar fluidic interconnect
US20200108394A1 (en) * 2017-04-21 2020-04-09 Hewlett-Packard Development Company, L.P. Electrowetting force droplet manipulation
EP3583416A4 (en) 2017-04-21 2020-03-18 Hewlett-Packard Development Company, L.P. FLUID CHIP-TO-CHIP INTERCONNECTION
CN107118955B (zh) * 2017-05-12 2020-03-10 京东方科技集团股份有限公司 基因测序芯片及基因测序方法
AU2018288532B2 (en) 2017-06-21 2023-08-03 Lightcast Discovery Ltd Microdroplet manipulation device
SG10202109873XA (en) 2017-06-21 2021-10-28 Base4 Innovation Ltd Microfluidic Analytical Device
US10926256B2 (en) * 2017-07-12 2021-02-23 Sharp Life Science (Eu) Limited Housing for simple assembly of an EWOD device
US10772215B2 (en) 2017-07-14 2020-09-08 International Business Machines Corporation Conductive polymers within drilled holes of printed circuit boards
CN110892258A (zh) 2017-07-24 2020-03-17 米罗库鲁斯公司 具有集成的血浆收集设备的数字微流控系统和方法
WO2019023646A2 (en) * 2017-07-27 2019-01-31 Maxim Integrated Products, Inc. ANALYTE SENSOR HOUSING AND METHOD FOR ANALYZING FLUID SAMPLES
CN115582155A (zh) 2017-09-01 2023-01-10 米罗库鲁斯公司 数字微流控设备及其使用方法
CN109420532B (zh) * 2017-09-01 2020-11-10 京东方科技集团股份有限公司 数字微流控基板及其制作方法、数字微流控芯片及方法
US11185862B2 (en) 2017-10-31 2021-11-30 National Technology & Engineering Solutions Of Sandia, Llc Digital microfluidic systems with electrode bus and methods for droplet manipulation
AU2018364741B2 (en) 2017-11-09 2021-03-25 Visby Medical, Inc. Portable molecular diagnostic device and methods for the detection of target viruses
US11383236B2 (en) 2017-11-10 2022-07-12 Christopher Walker Polymerase chain reaction using a microfluidic chip fabricated with printed circuit board techniques
US10396053B2 (en) 2017-11-17 2019-08-27 General Electric Company Semiconductor logic device and system and method of embedded packaging of same
US10566301B2 (en) * 2017-11-17 2020-02-18 General Electric Company Semiconductor logic device and system and method of embedded packaging of same
EP4183886A1 (en) 2018-01-29 2023-05-24 St. Jude Children's Research Hospital, Inc. Method for nucleic acid amplification
US10879195B2 (en) * 2018-02-15 2020-12-29 Micron Technology, Inc. Method for substrate moisture NCF voiding elimination
GB201802819D0 (en) * 2018-02-21 2018-04-04 Univ Oxford Innovation Ltd Methods and apparatus for manufacturing a microfluidic arrangement, and a microfluidic arrangement
US20190262829A1 (en) 2018-02-28 2019-08-29 Volta Labs, Inc. Directing Motion of Droplets Using Differential Wetting
GB2574048B (en) * 2018-05-24 2021-06-16 Oxford Nanopore Tech Ltd Nanopore sensor component with electrostatic discharge protection
US10926523B2 (en) 2018-06-19 2021-02-23 Sensel, Inc. Performance enhancement of sensors through surface processing
US10999925B2 (en) * 2018-09-19 2021-05-04 Ii-Vi Delaware, Inc. Stretchable conductor circuit
CN109092380A (zh) * 2018-09-19 2018-12-28 深圳先进技术研究院 数字微流控系统及液滴驱动方法
US10913067B2 (en) * 2018-10-01 2021-02-09 Sharp Life Science (Eu) Limited Barrier droplet configurations against migration between droplets on AM-EWOD devices
EP3864392A4 (en) 2018-10-08 2022-08-10 Bioelectronica Corporation OPTICAL SAMPLE PROCESSING SYSTEMS AND METHODS
ES2817843T3 (es) * 2018-10-18 2021-04-08 Lightcast Discovery Ltd Generador de gotitas y procedimiento de generación
WO2020094116A1 (en) 2018-11-09 2020-05-14 Mgi Tech Co., Ltd. Multilayer electrical connection for digital microfluids on substrates
CN113167760B (zh) 2018-12-02 2023-11-03 聚合物技术系统公司 用于电化学测试条带中的电子门特征的系统和方法
EP3924513B1 (en) 2019-02-14 2023-04-12 Pacific Biosciences of California, Inc. Mitigating adverse impacts of detection systems on nucleic acids and other biological analytes
EP3938779A1 (en) 2019-03-12 2022-01-19 Oxford Nanopore Technologies Limited Nanopore sensing device and methods of operation and of forming it
EP3953041A4 (en) 2019-04-08 2023-01-25 Miroculus Inc. MULTIPLE CARTRIDGE DIGITAL MICROFLUIDIC APPARATUS AND METHODS OF USE
CN111857191A (zh) * 2019-04-25 2020-10-30 北大方正集团有限公司 电路板制造过程中药水控制方法、装置、设备及存储介质
EP3986615A1 (en) * 2019-06-21 2022-04-27 Analog Devices International Unlimited Company A thermal platform and a method of fabricating a thermal platform
US11224877B2 (en) 2019-07-23 2022-01-18 a.u. Vista Inc. Systems and methods for analyzing droplets
US11524298B2 (en) 2019-07-25 2022-12-13 Miroculus Inc. Digital microfluidics devices and methods of use thereof
CN110528039B (zh) * 2019-07-31 2020-11-17 浙江大学 基于微弱离子电流检测监控的微纳结构局域电沉积装置
CN110653011A (zh) * 2019-09-30 2020-01-07 浙江大学 基于疏水薄膜可复用双层数字微流控芯片及快速制备方法
CN110665556A (zh) * 2019-09-30 2020-01-10 浙江大学 基于疏水薄膜可复用单层数字微流控芯片及快速制备方法
CN110882729A (zh) * 2019-09-30 2020-03-17 浙江大学 基于聚合物复合膜快速制备单层dmf芯片及制备方法
WO2021102134A1 (en) 2019-11-20 2021-05-27 E Ink Corporation Spatially variable hydrophobic layers for digital microfluidics
US11352675B2 (en) 2020-01-03 2022-06-07 Visby Medical, Inc. Devices and methods for antibiotic susceptability testing
CN114945426A (zh) 2020-01-17 2022-08-26 核酸有限公司 用于数字微流体的空间可变介电层
WO2021154627A1 (en) 2020-01-27 2021-08-05 E Ink Corporation Method for degassing liquid droplets by electrowetting actuation at higher temperatures
JP2023513832A (ja) 2020-02-18 2023-04-03 ヌークレラ ヌクリークス, リミテッド Ewodアレイの高周波ac駆動のためのアダプティブゲート駆動
CN115135413A (zh) 2020-02-19 2022-09-30 核酸有限公司 用于EWoD阵列的高频AC驱动的锁存晶体管驱动
EP4142942A1 (en) 2020-04-27 2023-03-08 Nuclera Nucleics Ltd Segmented top plate for variable driving and short protection for digital microfluidics
EP3912722A1 (en) * 2020-05-21 2021-11-24 Biothink Technologies S.L. Laboratory integrated on a chip and manufacturing procedure
EP4153775A1 (en) 2020-05-22 2023-03-29 10X Genomics, Inc. Simultaneous spatio-temporal measurement of gene expression and cellular activity
CN116568797A (zh) * 2020-06-30 2023-08-08 普莱克斯姆公司 流体装置和方法
CN113213420A (zh) * 2020-07-15 2021-08-06 江苏力博医药生物技术股份有限公司 一种微阵列结构图案化的装置
TW202228845A (zh) 2020-10-08 2022-08-01 英商核酸有限公司 微流體系統中試劑特異驅動ewod(介電質上電潤濕)陣列的方法
JP2023552673A (ja) 2020-11-04 2023-12-19 ヌークレラ リミテッド デジタル極小流体デバイスのための誘電体層
CN112717851A (zh) * 2020-12-24 2021-04-30 苏州大学 一种光驱动液态金属微液滴的装置及方法
KR102423154B1 (ko) 2021-04-13 2022-07-20 주식회사 시큐어메드 전도성 플라스틱을 이용한 진단 장치 및 그 장치의 제조 방법
CN113710037B (zh) * 2021-09-16 2022-10-18 维沃移动通信有限公司 盖板组件和电子设备
CN113858540B (zh) * 2021-10-08 2023-07-28 佛山华智新材料有限公司 微流控芯片及其制造方法
WO2023082005A1 (en) * 2021-11-12 2023-05-19 The Governing Council Of The University Of Toronto Microfluidics devices and methods
US11772093B2 (en) 2022-01-12 2023-10-03 Miroculus Inc. Methods of mechanical microfluidic manipulation
CN115121305A (zh) * 2022-07-13 2022-09-30 北京理工大学 一种新型数字微流控芯片及其制备方法
KR20240031829A (ko) 2022-09-01 2024-03-08 주식회사 시큐어메드 액적 액추에이터 및 그것의 액적 조작 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1211160A (zh) * 1997-07-16 1999-03-17 松下电器产业株式会社 布线板及其制造方法
CN1456030A (zh) * 2001-01-30 2003-11-12 松下电器产业株式会社 叠层用双面电路板、其制法及用其的多层印刷电路板
US20040055891A1 (en) * 2002-09-24 2004-03-25 Pamula Vamsee K. Methods and apparatus for manipulating droplets by electrowetting-based techniques

Family Cites Families (437)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687834A (en) 1970-04-06 1972-08-29 James T Candor Method and apparatus for removing particles from fluid containing the same
JPS4917079B1 (zh) 1970-12-21 1974-04-26
US3746911A (en) 1971-04-13 1973-07-17 Westinghouse Electric Corp Electrostatically deflectable light valves for projection displays
BE790280A (fr) 1971-11-19 1973-04-19 Technicon Instr Analyse photometrique d'une goutellette d'un echantillon liquide
US4057482A (en) 1972-06-16 1977-11-08 Candor James T Apparatus for removing liquid from liquid bearing material
US3795605A (en) * 1972-06-16 1974-03-05 J Candor Method and apparatus for removing and/or separating particles from fluid containing the same
US3930982A (en) * 1973-04-06 1976-01-06 The Carborundum Company Ferroelectric apparatus for dielectrophoresis particle extraction
US3872480A (en) 1974-03-14 1975-03-18 Rca Corp Method of electrostatic recording on electrically insulating films by non-wetting electrically conductive liquids
US3934180A (en) 1974-08-12 1976-01-20 Rca Corporation Method of reproducing an electrostatic charge pattern in intensified form
US4127460A (en) 1976-10-27 1978-11-28 Desoto, Inc. Radiation-curing aqueous coatings providing a nonadherent surface
US4244693A (en) 1977-02-28 1981-01-13 The United States Of America As Represented By The United States Department Of Energy Method and composition for testing for the presence of an alkali metal
US4257774A (en) 1979-07-16 1981-03-24 Meloy Laboratories, Inc. Intercalation inhibition assay for compounds that interact with DNA or RNA
US4430645A (en) * 1981-04-07 1984-02-07 Sensormatic Electronics Corporation Surveillance system employing a dual function floor mat radiator
US4418346A (en) 1981-05-20 1983-11-29 Batchelder J Samuel Method and apparatus for providing a dielectrophoretic display of visual information
US4390403A (en) 1981-07-24 1983-06-28 Batchelder J Samuel Method and apparatus for dielectrophoretic manipulation of chemical species
US4467325A (en) 1981-11-02 1984-08-21 Sperry Corporation Electro-optically addressed flat panel display
FR2524658A1 (fr) * 1982-03-30 1983-10-07 Socapex Commutateur optique et matrice de commutation comprenant de tels commutateurs
EP0119209A1 (en) 1982-09-20 1984-09-26 President And Fellows Of Harvard College Identification of microorganisms
FR2543320B1 (fr) 1983-03-23 1986-01-31 Thomson Csf Dispositif indicateur a commande electrique de deplacement d'un fluide
FR2548431B1 (fr) * 1983-06-30 1985-10-25 Thomson Csf Dispositif a commande electrique de deplacement de fluide
FR2548795B1 (fr) 1983-07-04 1986-11-21 Thomson Csf Dispositif de commutation optique a deplacement de fluide et dispositif de composition d'une ligne de points
FR2553907B1 (fr) 1983-10-21 1985-12-13 Thomson Csf Modulateur optique
US5038852A (en) 1986-02-25 1991-08-13 Cetus Corporation Apparatus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps
US4863849A (en) 1985-07-18 1989-09-05 New York Medical College Automatable process for sequencing nucleotide
US4824776A (en) 1985-07-25 1989-04-25 Molecular Biosystems, Inc. Method for increasing the sensitivity of nucleic acid hybridization assays
US4742345A (en) 1985-11-19 1988-05-03 Copytele, Inc. Electrophoretic display panel apparatus and methods therefor
JP3293820B2 (ja) 1985-12-13 2002-06-17 エンゾ− バイオケム インコ−ポレイテツド 標的ポリヌクレオチドにハイブリツド形成するための新規な一工程方法とポリヌクレオチド化合物
AU622104B2 (en) 1987-03-11 1992-04-02 Sangtec Molecular Diagnostics Ab Method of assaying of nucleic acids, a reagent combination and kit therefore
CA1317535C (en) 1987-06-30 1993-05-11 Nanibhushan Dattagupta Assay of sequences using amplified genes
IE72468B1 (en) 1987-07-31 1997-04-09 Univ Leland Stanford Junior Selective amplification of target polynucleotide sequences
US6013531A (en) 1987-10-26 2000-01-11 Dade International Inc. Method to use fluorescent magnetic polymer particles as markers in an immunoassay
AU2735988A (en) 1987-12-21 1989-07-13 Amoco Corporation Target and background capture methods with amplification for affinity assays
DE3808942A1 (de) 1988-03-17 1989-09-28 Bio Med Gmbh Ges Fuer Biotechn Inkubator, insbes. fuer die polymerase-ketten-methode
US4911782A (en) 1988-03-28 1990-03-27 Cyto-Fluidics, Inc. Method for forming a miniaturized biological assembly
US5225332A (en) 1988-04-22 1993-07-06 Massachusetts Institute Of Technology Process for manipulation of non-aqueous surrounded microdroplets
US4908112A (en) * 1988-06-16 1990-03-13 E. I. Du Pont De Nemours & Co. Silicon semiconductor wafer for analyzing micronic biological samples
JPH0288615A (ja) * 1988-09-27 1990-03-28 Mitsubishi Rayon Co Ltd 難燃性液状感光性樹脂組成物
JPH04506599A (ja) 1989-06-12 1992-11-19 セーイーエス ビオ アンテルナショナル 特定の核酸配列を検出する方法及びその応用
GB8917963D0 (en) * 1989-08-05 1989-09-20 Scras Apparatus for repeated automatic execution of a thermal cycle for treatment of biological samples
US5192659A (en) 1989-08-25 1993-03-09 Genetype Ag Intron sequence analysis method for detection of adjacent and remote locus alleles as haplotypes
US5001594A (en) * 1989-09-06 1991-03-19 Mcnc Electrostatic handling device
US5266498A (en) 1989-10-27 1993-11-30 Abbott Laboratories Ligand binding assay for an analyte using surface-enhanced scattering (SERS) signal
GB8926269D0 (en) 1989-11-21 1990-01-10 Dynal As Plasmid
DE3939964A1 (de) 1989-12-02 1991-06-06 Bayer Ag Hitzehaertbare beschichtungszusammensetzungen
US5795457A (en) 1990-01-30 1998-08-18 British Technology Group Ltd. Manipulation of solid, semi-solid or liquid materials
US5750015A (en) 1990-02-28 1998-05-12 Soane Biosciences Method and device for moving molecules by the application of a plurality of electrical fields
GB2245708A (en) * 1990-06-29 1992-01-08 Philips Electronic Associated Touch sensor array systems
SE467309B (sv) 1990-10-22 1992-06-29 Berol Nobel Ab Hydrofiliserad fast yta, foerfarande foer dess framstaellning samt medel daerfoer
US5181016A (en) 1991-01-15 1993-01-19 The United States Of America As Represented By The United States Department Of Energy Micro-valve pump light valve display
EP0497077B1 (de) * 1991-01-28 1996-07-17 Ciba-Geigy Ag Vorrichtung zur Vorbereitung von Proben insbesondere für Analysezwecke
US5994056A (en) 1991-05-02 1999-11-30 Roche Molecular Systems, Inc. Homogeneous methods for nucleic acid amplification and detection
DE4127405C2 (de) 1991-08-19 1996-02-29 Fraunhofer Ges Forschung Verfahren zur Trennung von Gemischen mikroskopisch kleiner, in einer Flüssigkeit oder einem Gel suspendierter dielektrischer Teilchen und Vorrichtung zur Durchführung des Verfahrens
US5849486A (en) 1993-11-01 1998-12-15 Nanogen, Inc. Methods for hybridization analysis utilizing electrically controlled hybridization
US5605662A (en) * 1993-11-01 1997-02-25 Nanogen, Inc. Active programmable electronic devices for molecular biological analysis and diagnostics
US5632957A (en) * 1993-11-01 1997-05-27 Nanogen Molecular biological diagnostic systems including electrodes
US6017696A (en) * 1993-11-01 2000-01-25 Nanogen, Inc. Methods for electronic stringency control for molecular biological analysis and diagnostics
DE4137261C2 (de) 1991-11-13 1995-06-29 Meinhard Prof Dr Knoll Miniaturisiertes Sensorelement zur Bestimmung von Stoffkonzentrationen in Flüssigkeiten und Verfahren zu seiner Herstellung
DE59108591D1 (de) * 1991-12-06 1997-04-10 Ciba Geigy Ag Elektrophoretische Trennvorrichtung und elektrophoretisches Trennverfahren
DE4234086A1 (de) 1992-02-05 1993-08-12 Diagen Inst Molekularbio Verfahren zur bestimmung von in vitro amplifizierten nukleinsaeuresequenzen
GB2264783A (en) 1992-02-24 1993-09-08 Gen Electric Co Plc Electrophoretic analysis method utilising wave effect
US5498392A (en) 1992-05-01 1996-03-12 Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification device and method
EP0574213B1 (en) * 1992-06-08 1999-03-24 Synaptics, Inc. Object position detector
WO1994008759A1 (en) 1992-10-16 1994-04-28 Thomas Jefferson University Method and apparatus for robotically performing sanger dideoxynucleotide dna sequencing reactions
US5472881A (en) 1992-11-12 1995-12-05 University Of Utah Research Foundation Thiol labeling of DNA for attachment to gold surfaces
US6152181A (en) 1992-11-16 2000-11-28 The United States Of America As Represented By The Secretary Of The Air Force Microdevices based on surface tension and wettability that function as sensors, actuators, and other devices
GB9306729D0 (en) 1993-03-31 1993-05-26 British Tech Group Improvements in separators
GB9311241D0 (en) 1993-06-01 1993-07-21 Celsis Ltd Reagents for use in bioluminescence
EP0636413B1 (en) 1993-07-28 2001-11-14 PE Corporation (NY) Nucleic acid amplification reaction apparatus and method
US6225059B1 (en) * 1993-11-01 2001-05-01 Nanogen, Inc. Advanced active electronic devices including collection electrodes for molecular biological analysis and diagnostics
US6068818A (en) * 1993-11-01 2000-05-30 Nanogen, Inc. Multicomponent devices for molecular biological analysis and diagnostics
US6099803A (en) 1994-07-07 2000-08-08 Nanogen, Inc. Advanced active electronic devices for molecular biological analysis and diagnostics
US5486337A (en) 1994-02-18 1996-01-23 General Atomics Device for electrostatic manipulation of droplets
US5948328A (en) 1994-02-24 1999-09-07 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Shaping of microparticles in electric-field cages
US5635671A (en) * 1994-03-16 1997-06-03 Amkor Electronics, Inc. Mold runner removal from a substrate-based packaged electronic device
DE4412286A1 (de) 1994-04-09 1995-10-12 Boehringer Mannheim Gmbh System zur kontaminationsfreien Bearbeitung von Reaktionsabläufen
DE4418513A1 (de) 1994-05-27 1995-11-30 Bayer Ag Immuntest zum Nachweis hochmolekularer Antigene
US5807522A (en) 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5472577A (en) 1994-06-30 1995-12-05 Iowa State University Research Foundation Fluid pumping system based on electrochemically-induced surface tension changes
US6071394A (en) 1996-09-06 2000-06-06 Nanogen, Inc. Channel-less separation of bioparticles on a bioelectronic chip by dielectrophoresis
US6379897B1 (en) 2000-11-09 2002-04-30 Nanogen, Inc. Methods for gene expression monitoring on electronic microarrays
US6001229A (en) 1994-08-01 1999-12-14 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis
US6613560B1 (en) 1994-10-19 2003-09-02 Agilent Technologies, Inc. PCR microreactor for amplifying DNA using microquantities of sample fluid
US5571410A (en) 1994-10-19 1996-11-05 Hewlett Packard Company Fully integrated miniaturized planar liquid sample handling and analysis device
US5603351A (en) * 1995-06-07 1997-02-18 David Sarnoff Research Center, Inc. Method and system for inhibiting cross-contamination in fluids of combinatorial chemistry device
US5632876A (en) * 1995-06-06 1997-05-27 David Sarnoff Research Center, Inc. Apparatus and methods for controlling fluid flow in microchannels
EP0791238B1 (en) 1994-11-10 2004-09-22 Orchid BioSciences, Inc. Liquid distribution system
JP3487524B2 (ja) * 1994-12-20 2004-01-19 株式会社ルネサステクノロジ 半導体装置及びその製造方法
US6673533B1 (en) 1995-03-10 2004-01-06 Meso Scale Technologies, Llc. Multi-array multi-specific electrochemiluminescence testing
US6319668B1 (en) 1995-04-25 2001-11-20 Discovery Partners International Method for tagging and screening molecules
US5817526A (en) 1995-05-09 1998-10-06 Fujirebio Inc. Method and apparatus for agglutination immunoassay
AU698921B2 (en) * 1995-06-08 1998-11-12 Bayer Healthcare Llc Nanofabricated separation matrix for analysis of biopolymers and methods of making and using same
US6124851A (en) 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
US6057149A (en) * 1995-09-15 2000-05-02 The University Of Michigan Microscale devices and reactions in microscale devices
US6130098A (en) 1995-09-15 2000-10-10 The Regents Of The University Of Michigan Moving microdroplets
US5851769A (en) 1995-09-27 1998-12-22 The Regents Of The University Of California Quantitative DNA fiber mapping
DE19544127C1 (de) * 1995-11-27 1997-03-20 Gimsa Jan Dr Verfahren und Vorrichtung zur Erzeugung von Resonanzerscheinungen in Partikelsuspensionen und ihre Verwendung
US5956005A (en) 1995-12-29 1999-09-21 Xerox Corporation Electrocapillary display sheet which utilizes an applied electric field to move a liquid inside the display sheet
US5888370A (en) 1996-02-23 1999-03-30 Board Of Regents, The University Of Texas System Method and apparatus for fractionation using generalized dielectrophoresis and field flow fractionation
US5993630A (en) 1996-01-31 1999-11-30 Board Of Regents The University Of Texas System Method and apparatus for fractionation using conventional dielectrophoresis and field flow fractionation
US5945281A (en) 1996-02-02 1999-08-31 Becton, Dickinson And Company Method and apparatus for determining an analyte from a sample fluid
US6355198B1 (en) * 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
US7244622B2 (en) 1996-04-03 2007-07-17 Applera Corporation Device and method for multiple analyte detection
US5885470A (en) 1997-04-14 1999-03-23 Caliper Technologies Corporation Controlled fluid transport in microfabricated polymeric substrates
US5731792A (en) * 1996-05-06 1998-03-24 Xerox Corporation Electrocapillary color display sheet
US5757345A (en) 1996-05-06 1998-05-26 Xerox Corportion Electrocapillary color display sheet
US6022463A (en) 1996-05-16 2000-02-08 Sendx Medical, Inc. Sensors with subminiature through holes
US5808593A (en) 1996-06-03 1998-09-15 Xerox Corporation Electrocapillary color display sheet
US6136212A (en) 1996-08-12 2000-10-24 The Regents Of The University Of Michigan Polymer-based micromachining for microfluidic devices
CA2266930C (en) 1996-09-24 2007-11-27 Case Western Reserve University Device for optical and electrochemical measurements in microliter size samples
GB9620209D0 (en) 1996-09-27 1996-11-13 Cemu Bioteknik Ab Method of sequencing DNA
US6379929B1 (en) 1996-11-20 2002-04-30 The Regents Of The University Of Michigan Chip-based isothermal amplification devices and methods
GB9626815D0 (en) 1996-12-23 1997-02-12 Cemu Bioteknik Ab Method of sequencing DNA
WO1998033585A1 (en) 1997-02-05 1998-08-06 California Institute Of Technology Microfluidic sub-millisecond mixers
US6235471B1 (en) * 1997-04-04 2001-05-22 Caliper Technologies Corp. Closed-loop biochemical analyzers
US6143496A (en) 1997-04-17 2000-11-07 Cytonix Corporation Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly
DE19717085C2 (de) 1997-04-23 1999-06-17 Bruker Daltonik Gmbh Verfahren und Geräte für extrem schnelle DNA-Vervielfachung durch Polymerase-Kettenreaktionen (PCR)
WO1998049548A1 (en) 1997-04-25 1998-11-05 Caliper Technologies Corporation Microfluidic devices incorporating improved channel geometries
US6106685A (en) 1997-05-13 2000-08-22 Sarnoff Corporation Electrode combinations for pumping fluids
US6109717A (en) 1997-05-13 2000-08-29 Sarnoff Corporation Multi-element fluid delivery apparatus and methods
US5980719A (en) 1997-05-13 1999-11-09 Sarnoff Corporation Electrohydrodynamic receptor
US6154226A (en) 1997-05-13 2000-11-28 Sarnoff Corporation Parallel print array
US5998224A (en) 1997-05-16 1999-12-07 Abbott Laboratories Magnetically assisted binding assays utilizing a magnetically responsive reagent
FR2764385B1 (fr) 1997-06-06 1999-07-16 Commissariat Energie Atomique Microsysteme d'analyse de liquides a cuvette integree
US6375871B1 (en) 1998-06-18 2002-04-23 3M Innovative Properties Company Methods of manufacturing microfluidic articles
US5876675A (en) * 1997-08-05 1999-03-02 Caliper Technologies Corp. Microfluidic devices and systems
US5989402A (en) 1997-08-29 1999-11-23 Caliper Technologies Corp. Controller/detector interfaces for microfluidic systems
US20020001544A1 (en) 1997-08-28 2002-01-03 Robert Hess System and method for high throughput processing of droplets
AU744879B2 (en) 1997-09-19 2002-03-07 Aclara Biosciences, Inc. Apparatus and method for transferring liquids
US7214298B2 (en) 1997-09-23 2007-05-08 California Institute Of Technology Microfabricated cell sorter
US6231177B1 (en) * 1997-09-29 2001-05-15 Sarnoff Corporation Final print medium having target regions corresponding to the nozzle of print array
US5958694A (en) 1997-10-16 1999-09-28 Caliper Technologies Corp. Apparatus and methods for sequencing nucleic acids in microfluidic systems
US5929960A (en) 1997-10-17 1999-07-27 Kent State University Method for forming liquid crystal display cell walls using a patterned electric field
US5992820A (en) 1997-11-19 1999-11-30 Sarnoff Corporation Flow control in microfluidics devices by controlled bubble formation
DE19822123C2 (de) 1997-11-21 2003-02-06 Meinhard Knoll Verfahren und Vorrichtung zum Nachweis von Analyten
US5911533A (en) * 1997-11-24 1999-06-15 Eastman Kodak Company Microfluidic writing pen
US6174675B1 (en) * 1997-11-25 2001-01-16 Caliper Technologies Corp. Electrical current for controlling fluid parameters in microchannels
US5948227A (en) 1997-12-17 1999-09-07 Caliper Technologies Corp. Methods and systems for performing electrophoretic molecular separations
US6063339A (en) 1998-01-09 2000-05-16 Cartesian Technologies, Inc. Method and apparatus for high-speed dot array dispensing
ATE477850T1 (de) 1998-01-12 2010-09-15 Massachusetts Inst Technology Vorrichtung zur mikrotestdurchführung
US6167910B1 (en) * 1998-01-20 2001-01-02 Caliper Technologies Corp. Multi-layer microfluidic devices
WO1999041015A1 (de) * 1998-02-11 1999-08-19 Institut für Physikalische Hochtechnologie e.V. Miniaturisierter temperaturzonen flussreaktor
US6251343B1 (en) * 1998-02-24 2001-06-26 Caliper Technologies Corp. Microfluidic devices and systems incorporating cover layers
US6211477B1 (en) * 1998-02-26 2001-04-03 Becton Dickinson And Company Electrostatic deceleration system for flow cytometer
US6318970B1 (en) 1998-03-12 2001-11-20 Micralyne Inc. Fluidic devices
FI980874A (fi) 1998-04-20 1999-10-21 Wallac Oy Menetelmä ja laite pienten nestemäärien kemiallisen analyysin suorittamiseksi
US6123798A (en) 1998-05-06 2000-09-26 Caliper Technologies Corp. Methods of fabricating polymeric structures incorporating microscale fluidic elements
AU3975399A (en) * 1998-05-07 1999-11-23 Purdue Research Foundation An (in situ) micromachined mixer for microfluidic analytical systems
JP2002516742A (ja) * 1998-05-29 2002-06-11 インダストリアル リサーチ リミテッド 粒子または細胞の集中および/または定位置への移動のための方法および装置
US6274089B1 (en) 1998-06-08 2001-08-14 Caliper Technologies Corp. Microfluidic devices, systems and methods for performing integrated reactions and separations
US6251595B1 (en) * 1998-06-18 2001-06-26 Agilent Technologies, Inc. Methods and devices for carrying out chemical reactions
US6226082B1 (en) 1998-06-25 2001-05-01 Amira Medical Method and apparatus for the quantitative analysis of a liquid sample with surface enhanced spectroscopy
JP4315491B2 (ja) * 1998-08-18 2009-08-19 ジャパンゴアテックス株式会社 半導体装置及びその製造方法
US6136171A (en) 1998-09-18 2000-10-24 The University Of Utah Research Foundation Micromachined electrical field-flow fractionation system
US6169394B1 (en) * 1998-09-18 2001-01-02 University Of The Utah Research Foundation Electrical detector for micro-analysis systems
US6482306B1 (en) 1998-09-22 2002-11-19 University Of Washington Meso- and microfluidic continuous flow and stopped flow electroösmotic mixer
US6086243A (en) 1998-10-01 2000-07-11 Sandia Corporation Electrokinetic micro-fluid mixer
US6086740A (en) 1998-10-29 2000-07-11 Caliper Technologies Corp. Multiplexed microfluidic devices and systems
US20030012699A1 (en) 1998-11-18 2003-01-16 Thomas Moore Simultaneous handling of magnetic beads in a two-dimensional arrangement
US6062261A (en) * 1998-12-16 2000-05-16 Lockheed Martin Energy Research Corporation MicrofluIdic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs
GB9901475D0 (en) 1999-01-22 1999-03-17 Pyrosequencing Ab A method of DNA sequencing
US6565727B1 (en) 1999-01-25 2003-05-20 Nanolytics, Inc. Actuators for microfluidics without moving parts
US6294063B1 (en) 1999-02-12 2001-09-25 Board Of Regents, The University Of Texas System Method and apparatus for programmable fluidic processing
ATE508200T1 (de) 1999-02-23 2011-05-15 Caliper Life Sciences Inc Sequenzierung durch inkorporation
US7167156B1 (en) 1999-02-26 2007-01-23 Micron Technology, Inc. Electrowetting display
US6225061B1 (en) 1999-03-10 2001-05-01 Sequenom, Inc. Systems and methods for performing reactions in an unsealed environment
US6148508A (en) 1999-03-12 2000-11-21 Caliper Technologies Corp. Method of making a capillary for electrokinetic transport of materials
CN1181337C (zh) 2000-08-08 2004-12-22 清华大学 微流体系统中实体分子的操纵方法及相关试剂盒
EP1041386B1 (en) 1999-03-25 2007-10-17 Tosoh Corporation Analyzer
US6352838B1 (en) * 1999-04-07 2002-03-05 The Regents Of The Universtiy Of California Microfluidic DNA sample preparation method and device
US6326173B1 (en) * 1999-04-12 2001-12-04 Nanogen/Becton Dickinson Partnership Electronically mediated nucleic acid amplification in NASBA
US20040053290A1 (en) 2000-01-11 2004-03-18 Terbrueggen Robert Henry Devices and methods for biochip multiplexing
IT1309430B1 (it) 1999-05-18 2002-01-23 Guerrieri Roberto Metodo ed apparato per la manipolazione di particelle per mezzo delladielettroforesi
FR2794039B1 (fr) 1999-05-27 2002-05-03 Osmooze Sa Dispositif de formation, de deplacement et de diffusion de petites quantites calibrees de liquides
ATE417127T1 (de) 1999-07-26 2008-12-15 Clinical Micro Sensors Inc Nukelinsäuresequenzbestimmung mittels elektronischem nachweis
US6977145B2 (en) 1999-07-28 2005-12-20 Serono Genetics Institute S.A. Method for carrying out a biochemical protocol in continuous flow in a microreactor
DE19938002A1 (de) 1999-08-11 2001-02-15 Studiengesellschaft Kohle Mbh Beschichtung mit quervernetzten hydrophilen Polymeren
WO2001013127A1 (fr) 1999-08-11 2001-02-22 Asahi Kasei Kabushiki Kaisha Cartouche d'analyse et dispositif de regulation d'apport de liquide
US6495104B1 (en) 1999-08-19 2002-12-17 Caliper Technologies Corp. Indicator components for microfluidic systems
US20030027204A1 (en) 1999-09-03 2003-02-06 Yokogawa Electric Corporation, A Japan Corporation Method and apparatus for producing biochips
US20040209376A1 (en) 1999-10-01 2004-10-21 Surromed, Inc. Assemblies of differentiable segmented particles
DE69931787T2 (de) 1999-11-11 2007-05-24 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Vorrichtung und Verfahren zur Verabreichung von Tropfen
US6432290B1 (en) 1999-11-26 2002-08-13 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
AU2427301A (en) 1999-12-01 2001-06-12 Regents Of The University Of California, The Electric-field-assisted fluidic assembly of inorganic and organic materials, molecules and like small things including living cells
SE9904802D0 (sv) 1999-12-23 1999-12-23 Amersham Pharm Biotech Ab Microfluidic surfaces
JP2002162652A (ja) 2000-01-31 2002-06-07 Fujitsu Ltd シート状表示装置、樹脂球状体、及びマイクロカプセル
CA2400644C (en) 2000-02-18 2009-07-14 Board Of Trustees Of The Leland Stanford Junior University Apparatus and methods for parallel processing of micro-volume liquid reactions
US6924792B1 (en) 2000-03-10 2005-08-02 Richard V. Jessop Electrowetting and electrostatic screen display systems, colour displays and transmission means
JP3442338B2 (ja) 2000-03-17 2003-09-02 株式会社日立製作所 Dna分析装置、dna塩基配列決定装置、dna塩基配列決定方法、および反応モジュール
US6442413B1 (en) 2000-05-15 2002-08-27 James H. Silver Implantable sensor
US6520197B2 (en) 2000-06-02 2003-02-18 The Regents Of The University Of California Continuous laminar fluid mixing in micro-electromechanical systems
US7351376B1 (en) 2000-06-05 2008-04-01 California Institute Of Technology Integrated active flux microfluidic devices and methods
EP1350095B1 (en) * 2000-06-14 2015-12-09 The Board Of Regents, The University Of Texas System Method and apparatus for combined magnetophoretic and dielectrophoretic manipulation of analyte mixtures
WO2001096024A2 (en) * 2000-06-14 2001-12-20 Board Of Regents, The University Of Texas System Apparatus and method for fluid injection
WO2001096025A2 (en) 2000-06-14 2001-12-20 Board Of Regents, The University Of Texas System Systems and methods for cell subpopulation analysis
US6602400B1 (en) 2000-06-15 2003-08-05 Motorola, Inc. Method for enhanced bio-conjugation events
US8529743B2 (en) 2000-07-25 2013-09-10 The Regents Of The University Of California Electrowetting-driven micropumping
CA2314398A1 (en) 2000-08-10 2002-02-10 Edward Shipwash Microarrays and microsystems for amino acid analysis and protein sequencing
US6773566B2 (en) 2000-08-31 2004-08-10 Nanolytics, Inc. Electrostatic actuators for microfluidics and methods for using same
EP2299256A3 (en) * 2000-09-15 2012-10-10 California Institute Of Technology Microfabricated crossflow devices and methods
EP1336181A2 (en) 2000-11-09 2003-08-20 Koninklijke Philips Electronics N.V. Multi-fluid elements device with controllable fluid level by means of matrix addressing
US6409698B1 (en) * 2000-11-27 2002-06-25 John N. Robinson Perforate electrodiffusion pump
US6453928B1 (en) 2001-01-08 2002-09-24 Nanolab Ltd. Apparatus, and method for propelling fluids
US6685812B2 (en) 2001-01-09 2004-02-03 The Regents Of The University Of California Movement of particles using sequentially activated dielectrophoretic particle trapping
US6897848B2 (en) 2001-01-11 2005-05-24 Xerox Corporation Rotating element sheet material and stylus with gradient field addressing
US7070681B2 (en) 2001-01-24 2006-07-04 The Board Of Trustees Of The Leland Stanford Junior University Electrokinetic instability micromixer
WO2002060754A1 (en) * 2001-01-29 2002-08-08 Caliper Technologies Corp. Non-mechanical valves for fluidic systems
US6621012B2 (en) 2001-02-01 2003-09-16 International Business Machines Corporation Insertion of electrical component within a via of a printed circuit board
US6692700B2 (en) 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
KR100398309B1 (ko) 2001-02-20 2003-09-19 한국과학기술원 연속 전기습윤에 의해 유도된 운동하는 액체 방울에 의해구동되는 마이크로펌프
US7078168B2 (en) 2001-02-27 2006-07-18 Biotage Ab Method for determining allele frequencies
US7016560B2 (en) 2001-02-28 2006-03-21 Lightwave Microsystems Corporation Microfluidic control for waveguide optical switches, variable attenuators, and other optical devices
WO2002068821A2 (en) 2001-02-28 2002-09-06 Lightwave Microsystems Corporation Microfluidic control using dieletric pumping
US6586233B2 (en) 2001-03-09 2003-07-01 The Regents Of The University Of California Convectively driven PCR thermal-cycling
US7010391B2 (en) 2001-03-28 2006-03-07 Handylab, Inc. Methods and systems for control of microfluidic devices
US6960437B2 (en) 2001-04-06 2005-11-01 California Institute Of Technology Nucleic acid amplification utilizing microfluidic devices
ITTO20010411A1 (it) * 2001-05-02 2002-11-02 Silicon Biosystems S R L Metodo e dispositivo per l'esecuzione di test e saggi ad alta processivita' ed alto valore biologico su cellule e/o composti.
US6491803B1 (en) 2001-05-18 2002-12-10 Apex Biotechnology Corporation Test strip and biosensor incorporating with nanometer metal particles
US6538823B2 (en) 2001-06-19 2003-03-25 Lucent Technologies Inc. Tunable liquid microlens
US6665127B2 (en) 2002-04-30 2003-12-16 Lucent Technologies Inc. Method and apparatus for aligning a photo-tunable microlens
US6965480B2 (en) 2001-06-19 2005-11-15 Lucent Technologies Inc. Method and apparatus for calibrating a tunable microlens
US7419574B2 (en) 2001-06-20 2008-09-02 Cummings Eric B Dielectrophoresis device and method having non-uniform arrays for manipulating particles
US7179423B2 (en) 2001-06-20 2007-02-20 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US7211442B2 (en) 2001-06-20 2007-05-01 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US7014747B2 (en) * 2001-06-20 2006-03-21 Sandia Corporation Dielectrophoretic systems without embedded electrodes
US6844028B2 (en) * 2001-06-26 2005-01-18 Accelr8 Technology Corporation Functional surface coating
US6835293B2 (en) * 2001-07-09 2004-12-28 Greiner Bio-One Gmbh Analysis system
US6734436B2 (en) 2001-08-07 2004-05-11 Sri International Optical microfluidic devices and methods
US6995024B2 (en) 2001-08-27 2006-02-07 Sri International Method and apparatus for electrostatic dispensing of microdroplets
US6545815B2 (en) 2001-09-13 2003-04-08 Lucent Technologies Inc. Tunable liquid microlens with lubrication assisted electrowetting
US7094379B2 (en) 2001-10-24 2006-08-22 Commissariat A L'energie Atomique Device for parallel and synchronous injection for sequential injection of different reagents
US7338760B2 (en) * 2001-10-26 2008-03-04 Ntu Ventures Private Limited Sample preparation integrated chip
US6600888B2 (en) 2001-11-02 2003-07-29 Xerox Corporation Liquid charging method and apparatus
US20030175947A1 (en) 2001-11-05 2003-09-18 Liu Robin Hui Enhanced mixing in microfluidic devices
US20040231987A1 (en) 2001-11-26 2004-11-25 Keck Graduate Institute Method, apparatus and article for microfluidic control via electrowetting, for chemical, biochemical and biological assays and the like
EP1450956A2 (en) 2001-11-26 2004-09-01 Keck Graduate Institute Method, apparatus and article for microfluidic control via electrowetting, for chemical, biochemical and biological assays and the like
GB0129068D0 (en) 2001-12-05 2002-01-23 Koninl Philips Electronics Nv Display device
KR100636259B1 (ko) * 2001-12-07 2006-10-19 후지쯔 가부시끼가이샤 반도체 장치 및 그 제조 방법
DE10162188A1 (de) * 2001-12-17 2003-06-18 Sunyx Surface Nanotechnologies Hydrophobe Oberfläche mit einer Vielzahl von Elektroden
US6866762B2 (en) * 2001-12-20 2005-03-15 Board Of Regents, University Of Texas System Dielectric gate and methods for fluid injection and control
US20030119057A1 (en) 2001-12-20 2003-06-26 Board Of Regents Forming and modifying dielectrically-engineered microparticles
JP2003194845A (ja) * 2001-12-25 2003-07-09 Matsushita Electric Works Ltd 半導体加速度センサ
WO2003057875A1 (fr) 2002-01-08 2003-07-17 Japan Science And Technology Agency Procede de pcr par transport electrostatique, procede d'hybridation pour transport electrostatique et dispositifs prevus a cet effet
US6887362B2 (en) * 2002-02-06 2005-05-03 Nanogen, Inc. Dielectrophoretic separation and immunoassay methods on active electronic matrix devices
EP1478951B1 (en) 2002-02-14 2006-11-29 Koninklijke Philips Electronics N.V. Variable focus lens
US6936196B2 (en) 2002-03-12 2005-08-30 Lucent Technologies Inc. Solidifiable tunable liquid microlens
US7223371B2 (en) 2002-03-14 2007-05-29 Micronics, Inc. Microfluidic channel network device
WO2003082903A2 (en) 2002-03-29 2003-10-09 The University Of Utah Research Foundation Hybrid phosphoinositide phospholipids: compositions and uses
US7147763B2 (en) 2002-04-01 2006-12-12 Palo Alto Research Center Incorporated Apparatus and method for using electrostatic force to cause fluid movement
WO2004038363A2 (en) 2002-05-09 2004-05-06 The University Of Chicago Microfluidic device and method for pressure-driven plug transport and reaction
US6958132B2 (en) 2002-05-31 2005-10-25 The Regents Of The University Of California Systems and methods for optical actuation of microfluidics based on opto-electrowetting
US20040031918A1 (en) * 2002-05-31 2004-02-19 Schoen Alan E. Mass spectrometer with improved mass accuracy
FR2841063B1 (fr) 2002-06-18 2004-09-17 Commissariat Energie Atomique Dispositif de deplacement de petits volumes de liquide le long d'un micro-catenaire par des forces electrostatiques
JP2006507921A (ja) 2002-06-28 2006-03-09 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 流体分散のための方法および装置
FR2842747B1 (fr) 2002-07-23 2004-10-15 Commissariat Energie Atomique Procede et dispositif pour le criblage de molecules dans des cellules
FR2843048B1 (fr) 2002-08-01 2004-09-24 Commissariat Energie Atomique Dispositif d'injection et de melange de micro-gouttes liquides.
US20040091392A1 (en) 2002-08-09 2004-05-13 Mcbride Sterling Eduard Method and apparatus for employing a tunable microfluidic device for optical switching, filtering and assaying of biological samples
GB0219872D0 (en) * 2002-08-27 2002-10-02 Univ Belfast Charged particle manipulation
US6829415B2 (en) 2002-08-30 2004-12-07 Lucent Technologies Inc. Optical waveguide devices with electro-wetting actuation
EP1543371B1 (en) 2002-09-19 2009-12-23 Koninklijke Philips Electronics N.V. Electrowetting optical switch
US6989234B2 (en) * 2002-09-24 2006-01-24 Duke University Method and apparatus for non-contact electrostatic actuation of droplets
US7329545B2 (en) 2002-09-24 2008-02-12 Duke University Methods for sampling a liquid flow
US20040055871A1 (en) 2002-09-25 2004-03-25 The Regents Of The University Of California Use of ion beams for protecting substrates from particulate defect contamination in ultra-low-defect coating processes
JP2004163394A (ja) 2002-09-26 2004-06-10 Seiko Epson Corp 液滴吐出ヘッド及びその製造方法、マイクロアレイ製造装置並びにマイクロアレイの製造方法
WO2004037374A2 (en) 2002-10-23 2004-05-06 The Trustees Of Princeton University Method for continuous particle separation using obstacle arrays asymmetrically aligned to fields
US7217542B2 (en) 2002-10-31 2007-05-15 Hewlett-Packard Development Company, L.P. Microfluidic system for analyzing nucleic acids
JP4429585B2 (ja) * 2002-11-08 2010-03-10 富士通株式会社 選択的絶縁方法及び貫通ビアを備えた実装基板
FR2846957B1 (fr) * 2002-11-13 2005-09-30 Commissariat Energie Atomique Micro-systeme a remplissage de micro-billes et procede d'obtention
US20050038329A1 (en) * 2002-11-20 2005-02-17 Morris Carol Ann Methods and kits for assays of rapid screening of diabetes
JP2004207518A (ja) * 2002-12-25 2004-07-22 Nokia Corp 多層プリント回路基板、受動素子アレイ、多層プリント回路基板の製造方法および受動素子アレイの製造方法
US7547380B2 (en) 2003-01-13 2009-06-16 North Carolina State University Droplet transportation devices and methods having a fluid surface
US7604718B2 (en) 2003-02-19 2009-10-20 Bioarray Solutions Ltd. Dynamically configurable electrode formed of pixels
GB0304033D0 (en) 2003-02-21 2003-03-26 Imp College Innovations Ltd Apparatus
US7041481B2 (en) 2003-03-14 2006-05-09 The Regents Of The University Of California Chemical amplification based on fluid partitioning
JP2004275921A (ja) 2003-03-17 2004-10-07 Seiko Epson Corp 液滴吐出装置及び方法、液滴吐出ヘッド装置、並びにデバイス製造方法及びデバイス
JP2004327482A (ja) * 2003-04-21 2004-11-18 Fujikura Ltd 多層配線板、多層基板用基材およびその製造方法
JP2004322019A (ja) 2003-04-28 2004-11-18 Seiko Epson Corp 液滴吐出装置及び方法
JP4404672B2 (ja) 2003-05-28 2010-01-27 セイコーエプソン株式会社 液滴吐出ヘッド、液滴吐出ヘッドの製造方法、マイクロアレイ製造装置、及びマイクロアレイの製造方法
JP2005019686A (ja) * 2003-06-26 2005-01-20 Kyocera Corp コンデンサ素子内蔵多層配線基板
EP1643231A1 (en) * 2003-07-09 2006-04-05 Olympus Corporation Device and method for carrying and treating liquid
TWI230760B (en) * 2003-07-29 2005-04-11 Univ Tsinghua Electrowetting electrode design with electromagnetic field for actuation of the magnetic-beads biochemical detection system
US7767435B2 (en) * 2003-08-25 2010-08-03 University Of Washington Method and device for biochemical detection and analysis of subcellular compartments from a single cell
CA2479452C (en) * 2003-08-30 2008-11-04 F.Hoffmann-La Roche Ag Method and device for determining analytes in a liquid
DK1695094T3 (da) 2003-10-24 2013-09-16 Adhesives Res Inc Disintegrerende film til diagnostiske indretninger
JP2005139011A (ja) 2003-11-04 2005-06-02 Nof Corp 火薬原料及びその製造方法
DE602004021624D1 (de) 2003-11-17 2009-07-30 Koninkl Philips Electronics Nv System zur handhabung einer fluidmenge
KR100647282B1 (ko) 2003-12-24 2006-11-17 삼성전자주식회사 DNA 마이크로어레이 스폿팅(Spoting) 장치 및이를 이용한 스폿팅 방법
CA2553025A1 (en) 2004-01-14 2005-07-28 Luminex Corporation Methods and systems for dynamic range expansion
WO2005069015A1 (ja) 2004-01-15 2005-07-28 Japan Science And Technology Agency 化学分析装置及び化学分析方法
US7927797B2 (en) 2004-01-28 2011-04-19 454 Life Sciences Corporation Nucleic acid amplification with continuous flow emulsion
FR2866493B1 (fr) 2004-02-16 2010-08-20 Commissariat Energie Atomique Dispositif de controle du deplacement d'une goutte entre deux ou plusieurs substrats solides
US7495031B2 (en) 2004-02-24 2009-02-24 Kao Corporation Process for producing an emulsion
KR100552706B1 (ko) 2004-03-12 2006-02-20 삼성전자주식회사 핵산 증폭 방법 및 장치
US7048889B2 (en) 2004-03-23 2006-05-23 Lucent Technologies Inc. Dynamically controllable biological/chemical detectors having nanostructured surfaces
US20050226991A1 (en) 2004-04-07 2005-10-13 Hossainy Syed F Methods for modifying balloon of a catheter assembly
KR100583231B1 (ko) * 2004-04-13 2006-05-26 한국과학기술연구원 물방울형 세포 부유액을 이용한 세포 분리 장치
JP2007536634A (ja) 2004-05-04 2007-12-13 フィッシャー−ローズマウント・システムズ・インコーポレーテッド プロセス制御システムのためのサービス指向型アーキテクチャ
EP3144066A1 (en) * 2004-05-28 2017-03-22 Board of Regents, The University of Texas System Programmable fluidic processors
US7799553B2 (en) 2004-06-01 2010-09-21 The Regents Of The University Of California Microfabricated integrated DNA analysis system
FR2871076A1 (fr) 2004-06-04 2005-12-09 Univ Lille Sciences Tech Dispositif pour desorption par rayonnement laser incorporant une manipulation de l'echantillon liquide sous forme de gouttes individuelles permettant leur traitement chimique et biochimique
US7121998B1 (en) 2004-06-08 2006-10-17 Eurica Califorrniaa Vented microcradle for prenidial incubator
FR2872438B1 (fr) 2004-07-01 2006-09-15 Commissariat Energie Atomique Dispositif de deplacement et de traitement de volumes de liquide
US7693666B2 (en) * 2004-07-07 2010-04-06 Rensselaer Polytechnic Institute Method, system, and program product for controlling chemical reactions in a digital microfluidic system
FR2872715B1 (fr) 2004-07-08 2006-11-17 Commissariat Energie Atomique Microreacteur goutte
FR2872809B1 (fr) 2004-07-09 2006-09-15 Commissariat Energie Atomique Methode d'adressage d'electrodes
WO2006025982A2 (en) 2004-07-28 2006-03-09 University Of Rochester Rapid flow fractionation of particles combining liquid and particulate dielectrophoresis
JP2006058031A (ja) 2004-08-17 2006-03-02 Hitachi High-Technologies Corp 化学分析装置
WO2006026351A1 (en) * 2004-08-26 2006-03-09 Applera Corporation Electrowetting dispensing devices and related methods
JP4047314B2 (ja) 2004-09-07 2008-02-13 株式会社東芝 微細流路構造体
CN102513170B (zh) 2004-09-09 2015-03-25 居里研究所 用于在微容器特别是微通道中操纵小包的装置
JP4185904B2 (ja) 2004-10-27 2008-11-26 株式会社日立ハイテクノロジーズ 液体搬送基板、分析システム、分析方法
US7347533B2 (en) 2004-12-20 2008-03-25 Palo Alto Research Center Incorporated Low cost piezo printhead based on microfluidics in printed circuit board and screen-printed piezoelectrics
FR2879946B1 (fr) 2004-12-23 2007-02-09 Commissariat Energie Atomique Dispositif de dispense de gouttes
US7458661B2 (en) 2005-01-25 2008-12-02 The Regents Of The University Of California Method and apparatus for promoting the complete transfer of liquid drops from a nozzle
PL1859330T3 (pl) 2005-01-28 2013-01-31 Univ Duke Urządzenia i sposoby manipulacji kropelkami na płytkach obwodów drukowanych
US7454988B2 (en) 2005-02-10 2008-11-25 Applera Corporation Method for fluid sampling using electrically controlled droplets
US7654738B2 (en) 2005-03-07 2010-02-02 Koninklijke Philips Electronics N.V. Cable guiding for a ceiling support of an X-ray device
US20060210443A1 (en) 2005-03-14 2006-09-21 Stearns Richard G Avoidance of bouncing and splashing in droplet-based fluid transport
FR2884437B1 (fr) 2005-04-19 2007-07-20 Commissariat Energie Atomique Dispositif et procede microfluidique de transfert de matiere entre deux phases immiscibles.
US7053323B1 (en) * 2005-05-04 2006-05-30 Agilent Technologies, Inc. Liquid metal switch employing an electrically isolated control element
JP2008539759A (ja) 2005-05-11 2008-11-20 ナノリティックス・インコーポレイテッド 多数の温度で生化学的又は化学的な反応を実施する方法及び装置
JP4547301B2 (ja) 2005-05-13 2010-09-22 株式会社日立ハイテクノロジーズ 液体搬送デバイス及び分析システム
JP2006317364A (ja) 2005-05-16 2006-11-24 Hitachi High-Technologies Corp 分注装置
CN101237934B (zh) 2005-05-21 2012-12-19 先进液体逻辑公司 用亲水性聚合物助剂减弱生物分子的吸附
JP2006329904A (ja) 2005-05-30 2006-12-07 Hitachi High-Technologies Corp 液体搬送デバイス及び分析システム
JP4500733B2 (ja) 2005-05-30 2010-07-14 株式会社日立ハイテクノロジーズ 化学分析装置
JP4969060B2 (ja) 2005-06-08 2012-07-04 株式会社日立ハイテクノロジーズ 自動分析装置
US7919330B2 (en) * 2005-06-16 2011-04-05 Advanced Liquid Logic, Inc. Method of improving sensor detection of target molcules in a sample within a fluidic system
FR2887305B1 (fr) 2005-06-17 2011-05-27 Commissariat Energie Atomique Dispositif de pompage par electromouillage et application aux mesures d'activite electrique
DE602005011870D1 (de) 2005-07-01 2009-01-29 Commissariat Energie Atomique Hydrophobe oberflächenbeschichtung mit geringer benetzungshysterese, aufbringungsverfahren dafür, mikrokomponente und verwendung
ITBO20050481A1 (it) 2005-07-19 2007-01-20 Silicon Biosystems S R L Metodo ed apparato per la manipolazione e/o l'individuazione di particelle
FR2888912B1 (fr) 2005-07-25 2007-08-24 Commissariat Energie Atomique Procede de commande d'une communication entre deux zones par electromouillage, dispositif comportant des zones isolables les unes des autres et procede de realisation d'un tel dispositif
US20070023292A1 (en) 2005-07-26 2007-02-01 The Regents Of The University Of California Small object moving on printed circuit board
FR2889515B1 (fr) 2005-08-02 2007-11-02 Commissariat Energie Atomique Dispositif de controle du deplacement d'un volume liquide entre deux ou plusieurs substrats solides et procede de deplacement
WO2007021810A2 (en) * 2005-08-11 2007-02-22 Eksigent Technologies, Llc Microfluidic methods and apparatuses for fluid mixing and valving
WO2007021811A2 (en) 2005-08-11 2007-02-22 Eksigent Technologies, Llc Microfluid based apparatus and method for thermal regulation and noise reduction
US20090146380A1 (en) 2005-08-11 2009-06-11 Eksigent Technologies, Llc Methods and apparatuses for generating a seal between a conduit and a reservoir well
WO2007024778A2 (en) * 2005-08-22 2007-03-01 Applera Corporation Device, system and method for depositing processed immiscible-fluid-discrete-volumes
US7556776B2 (en) 2005-09-08 2009-07-07 President And Fellows Of Harvard College Microfluidic manipulation of fluids and reactions
EP2261635B1 (en) 2005-09-21 2017-05-03 Luminex Corporation Methods and systems for image data processing
FR2890875B1 (fr) 2005-09-22 2008-02-22 Commissariat Energie Atomique Fabrication d'un systeme diphasique liquide/liquide ou gaz en micro-fluidique
US20070075922A1 (en) 2005-09-28 2007-04-05 Jessop Richard V Electronic display systems
US7344679B2 (en) 2005-10-14 2008-03-18 International Business Machines Corporation Method and apparatus for point of care osmolarity testing
WO2007048111A2 (en) 2005-10-22 2007-04-26 Core-Microsolutions, Inc. Droplet extraction from a liquid column for on-chip microfluidics
ITBO20050646A1 (it) 2005-10-26 2007-04-27 Silicon Biosystem S R L Metodo ed apparato per la caratterizzazione ed il conteggio di particelle
JP2007147321A (ja) 2005-11-24 2007-06-14 Toshiba Corp 液量検知構造
CA2634522C (en) 2005-12-21 2015-09-29 Meso Scale Technologies, Llc Assay modules having assay reagents and methods of making and using same
TWI303312B (en) * 2005-12-21 2008-11-21 Ind Tech Res Inst Matrix electrodes controlling device and digital fluid detection platform thereof
EP2364774A3 (en) 2006-01-11 2014-06-04 Raindance Technologies, Inc. Microfluidic Devices And Methods Of Use In The Formation And Control Of Nanoreactors
US8124033B2 (en) 2006-02-17 2012-02-28 Agency, Science, Technology and Research Apparatus for regulating the temperature of a biological and/or chemical sample and method of using the same
WO2007103859A2 (en) 2006-03-03 2007-09-13 Luminex Corporation Methods, products, and kits for identifying an analyte in a sample
US8492168B2 (en) 2006-04-18 2013-07-23 Advanced Liquid Logic Inc. Droplet-based affinity assays
US8637317B2 (en) 2006-04-18 2014-01-28 Advanced Liquid Logic, Inc. Method of washing beads
US8613889B2 (en) 2006-04-13 2013-12-24 Advanced Liquid Logic, Inc. Droplet-based washing
WO2010006166A2 (en) 2008-07-09 2010-01-14 Advanced Liquid Logic, Inc. Bead manipulation techniques
WO2007123908A2 (en) * 2006-04-18 2007-11-01 Advanced Liquid Logic, Inc. Droplet-based multiwell operations
WO2010042637A2 (en) 2008-10-07 2010-04-15 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US8716015B2 (en) 2006-04-18 2014-05-06 Advanced Liquid Logic, Inc. Manipulation of cells on a droplet actuator
US8658111B2 (en) 2006-04-18 2014-02-25 Advanced Liquid Logic, Inc. Droplet actuators, modified fluids and methods
US7901947B2 (en) * 2006-04-18 2011-03-08 Advanced Liquid Logic, Inc. Droplet-based particle sorting
US7816121B2 (en) 2006-04-18 2010-10-19 Advanced Liquid Logic, Inc. Droplet actuation system and method
US8809068B2 (en) 2006-04-18 2014-08-19 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
US8685754B2 (en) 2006-04-18 2014-04-01 Advanced Liquid Logic, Inc. Droplet actuator devices and methods for immunoassays and washing
US7439014B2 (en) 2006-04-18 2008-10-21 Advanced Liquid Logic, Inc. Droplet-based surface modification and washing
WO2010027894A2 (en) 2008-08-27 2010-03-11 Advanced Liquid Logic, Inc. Droplet actuators, modified fluids and methods
US7815871B2 (en) 2006-04-18 2010-10-19 Advanced Liquid Logic, Inc. Droplet microactuator system
US7763471B2 (en) * 2006-04-18 2010-07-27 Advanced Liquid Logic, Inc. Method of electrowetting droplet operations for protein crystallization
JP5054096B2 (ja) 2006-04-18 2012-10-24 アドヴァンスト リキッド ロジック インコーポレイテッド 液滴に基づく生化学
US8637324B2 (en) 2006-04-18 2014-01-28 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US8389297B2 (en) 2006-04-18 2013-03-05 Duke University Droplet-based affinity assay device and system
US8470606B2 (en) 2006-04-18 2013-06-25 Duke University Manipulation of beads in droplets and methods for splitting droplets
US8980198B2 (en) 2006-04-18 2015-03-17 Advanced Liquid Logic, Inc. Filler fluids for droplet operations
US8041463B2 (en) 2006-05-09 2011-10-18 Advanced Liquid Logic, Inc. Modular droplet actuator drive
US7822510B2 (en) * 2006-05-09 2010-10-26 Advanced Liquid Logic, Inc. Systems, methods, and products for graphically illustrating and controlling a droplet actuator
US7939021B2 (en) 2007-05-09 2011-05-10 Advanced Liquid Logic, Inc. Droplet actuator analyzer with cartridge
WO2009026339A2 (en) 2007-08-20 2009-02-26 Advanced Liquid Logic, Inc. Modular droplet actuator drive
WO2008051310A2 (en) 2006-05-09 2008-05-02 Advanced Liquid Logic, Inc. Droplet manipulation systems
WO2009111769A2 (en) 2008-03-07 2009-09-11 Advanced Liquid Logic, Inc. Reagent and sample preparation and loading on a fluidic device
US20080014589A1 (en) 2006-05-11 2008-01-17 Link Darren R Microfluidic devices and methods of use thereof
JP2008008283A (ja) 2006-05-30 2008-01-17 Denso Corp ベーン式の可変バルブタイミング調整機構の制御装置
WO2007146025A2 (en) 2006-06-06 2007-12-21 University Of Virginia Patent Foundation Capillary force actuator device and related method of applications
US7629124B2 (en) * 2006-06-30 2009-12-08 Canon U.S. Life Sciences, Inc. Real-time PCR in micro-channels
CN101490562B (zh) 2006-07-10 2012-12-19 株式会社日立高新技术 液体输送设备
EP1905513A1 (en) 2006-09-13 2008-04-02 Institut Curie Methods and devices for sampling fluids
JP4901410B2 (ja) 2006-10-10 2012-03-21 シャープ株式会社 バックライト装置及び映像表示装置
WO2008055256A2 (en) 2006-11-02 2008-05-08 The Regents Of The University Of California Method and apparatus for real-time feedback control of electrical manipulation of droplets on chip
FR2909293B1 (fr) 2006-12-05 2011-04-22 Commissariat Energie Atomique Micro-dispositif de traitement d'echantillons liquides
EP3118333B1 (en) 2006-12-13 2019-04-03 Luminex Corporation Systems and methods for multiplex analysis of pcr in real time
US8338166B2 (en) 2007-01-04 2012-12-25 Lawrence Livermore National Security, Llc Sorting, amplification, detection, and identification of nucleic acid subsequences in a complex mixture
US8685344B2 (en) 2007-01-22 2014-04-01 Advanced Liquid Logic, Inc. Surface assisted fluid loading and droplet dispensing
CA2712863C (en) 2007-02-09 2015-01-06 Advanced Liquid Logic, Inc. Droplet actuator devices and methods employing magnetic beads
EP2109774B1 (en) 2007-02-15 2018-07-04 Advanced Liquid Logic, Inc. Capacitance detection in a droplet actuator
WO2008106678A1 (en) 2007-03-01 2008-09-04 Advanced Liquid Logic, Inc. Droplet actuator structures
WO2008109664A1 (en) 2007-03-05 2008-09-12 Advanced Liquid Logic, Inc. Hydrogen peroxide droplet-based assays
CN101652652B (zh) 2007-03-13 2012-07-18 先进流体逻辑公司 改进吸光度检测的微滴执行机构装置、配置及方法
WO2008116221A1 (en) 2007-03-22 2008-09-25 Advanced Liquid Logic, Inc. Bead sorting on a droplet actuator
EP2837692A1 (en) 2007-03-22 2015-02-18 Advanced Liquid Logic, Inc. Enzymatic assays for a droplet actuator
US8202686B2 (en) 2007-03-22 2012-06-19 Advanced Liquid Logic, Inc. Enzyme assays for a droplet actuator
US8093062B2 (en) 2007-03-22 2012-01-10 Theodore Winger Enzymatic assays using umbelliferone substrates with cyclodextrins in droplets in oil
EP2136920A2 (en) 2007-03-23 2009-12-30 Advanced Liquid Logic, Inc. Droplet actuator loading and target concentration
AU2008237017B2 (en) 2007-04-10 2013-10-24 Advanced Liquid Logic, Inc. Droplet dispensing device and methods
WO2010009463A2 (en) 2008-07-18 2010-01-21 Advanced Liquid Logic, Inc. Droplet operations device
WO2008134153A1 (en) 2007-04-23 2008-11-06 Advanced Liquid Logic, Inc. Bead-based multiplexed analytical methods and instrumentation
WO2008131420A2 (en) 2007-04-23 2008-10-30 Advanced Liquid Logic, Inc. Sample collector and processor
US20100206094A1 (en) 2007-04-23 2010-08-19 Advanced Liquid Logic, Inc. Device and Method for Sample Collection and Concentration
US20080283414A1 (en) 2007-05-17 2008-11-20 Monroe Charles W Electrowetting devices
WO2008147568A1 (en) 2007-05-24 2008-12-04 Digital Biosystems Electrowetting based digital microfluidics
US8951732B2 (en) 2007-06-22 2015-02-10 Advanced Liquid Logic, Inc. Droplet-based nucleic acid amplification in a temperature gradient
US8926811B2 (en) 2007-06-27 2015-01-06 Digital Biosystems Digital microfluidics based apparatus for heat-exchanging chemical processes
US20100120130A1 (en) 2007-08-08 2010-05-13 Advanced Liquid Logic, Inc. Droplet Actuator with Droplet Retention Structures
WO2009021173A1 (en) 2007-08-08 2009-02-12 Advanced Liquid Logic, Inc. Use of additives for enhancing droplet operations
WO2009021233A2 (en) 2007-08-09 2009-02-12 Advanced Liquid Logic, Inc. Pcb droplet actuator fabrication
CA2696604A1 (en) 2007-08-24 2009-03-05 Advanced Liquid Logic, Inc. Bead manipulations on a droplet actuator
US8702938B2 (en) 2007-09-04 2014-04-22 Advanced Liquid Logic, Inc. Droplet actuator with improved top substrate
TWI375023B (en) * 2007-10-05 2012-10-21 Univ Nat Taiwan A cellular microarray and its microfabrication method
US8460528B2 (en) 2007-10-17 2013-06-11 Advanced Liquid Logic Inc. Reagent storage and reconstitution for a droplet actuator
US8454905B2 (en) 2007-10-17 2013-06-04 Advanced Liquid Logic Inc. Droplet actuator structures
EP2212683A4 (en) 2007-10-17 2011-08-31 Advanced Liquid Logic Inc MANIPULATION OF BEADS INTO DROPLETS
WO2009052123A2 (en) 2007-10-17 2009-04-23 Advanced Liquid Logic, Inc. Multiplexed detection schemes for a droplet actuator
US7621059B2 (en) 2007-10-18 2009-11-24 Oceaneering International, Inc. Underwater sediment evacuation system
US20100236929A1 (en) 2007-10-18 2010-09-23 Advanced Liquid Logic, Inc. Droplet Actuators, Systems and Methods
EP2232535A4 (en) 2007-12-10 2016-04-13 Advanced Liquid Logic Inc DROPLET ACTUATOR CONFIGURATIONS AND METHODS
JP5462183B2 (ja) 2007-12-23 2014-04-02 アドヴァンスト リキッド ロジック インコーポレイテッド 液滴動作を導く液滴アクチュエータ構成及び方法
WO2009135205A2 (en) 2008-05-02 2009-11-05 Advanced Liquid Logic, Inc. Droplet actuator techniques using coagulatable samples
WO2009137415A2 (en) 2008-05-03 2009-11-12 Advanced Liquid Logic, Inc. Reagent and sample preparation, loading, and storage
ES2438989T3 (es) 2008-05-13 2014-01-21 Advanced Liquid Logic, Inc. Dispositivos, sistemas y métodos accionadores de gotitas
US20110097763A1 (en) 2008-05-13 2011-04-28 Advanced Liquid Logic, Inc. Thermal Cycling Method
US8093064B2 (en) 2008-05-15 2012-01-10 The Regents Of The University Of California Method for using magnetic particles in droplet microfluidics
EP2286228B1 (en) 2008-05-16 2019-04-03 Advanced Liquid Logic, Inc. Droplet actuator devices and methods for manipulating beads
FR2933713B1 (fr) 2008-07-11 2011-03-25 Commissariat Energie Atomique Procede et dispositif de manipulation et d'observation de gouttes de liquide
EP3273059B1 (en) 2008-08-13 2021-09-22 Advanced Liquid Logic, Inc. Methods, systems and products for conducting droplet operations
WO2010077859A2 (en) 2008-12-15 2010-07-08 Advanced Liquid Logic, Inc. Nucleic acid amplification and sequencing on a droplet actuator
US8877512B2 (en) 2009-01-23 2014-11-04 Advanced Liquid Logic, Inc. Bubble formation techniques using physical or chemical features to retain a gas bubble within a droplet actuator
WO2011002957A2 (en) 2009-07-01 2011-01-06 Advanced Liquid Logic, Inc. Droplet actuator devices and methods
US20130288254A1 (en) 2009-08-13 2013-10-31 Advanced Liquid Logic, Inc. Droplet Actuator and Droplet-Based Techniques
US8926065B2 (en) 2009-08-14 2015-01-06 Advanced Liquid Logic, Inc. Droplet actuator devices and methods
TWI372137B (en) * 2009-09-04 2012-09-11 Univ Nat Chiao Tung Dielectrophoresis-based microfluidic system
US8846414B2 (en) 2009-09-29 2014-09-30 Advanced Liquid Logic, Inc. Detection of cardiac markers on a droplet actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1211160A (zh) * 1997-07-16 1999-03-17 松下电器产业株式会社 布线板及其制造方法
CN1456030A (zh) * 2001-01-30 2003-11-12 松下电器产业株式会社 叠层用双面电路板、其制法及用其的多层印刷电路板
US20040055891A1 (en) * 2002-09-24 2004-03-25 Pamula Vamsee K. Methods and apparatus for manipulating droplets by electrowetting-based techniques

Also Published As

Publication number Publication date
US20150060284A1 (en) 2015-03-05
US8048628B2 (en) 2011-11-01
AU2006207933B2 (en) 2010-11-18
JP2014170005A (ja) 2014-09-18
HK1110826A1 (en) 2008-07-25
BRPI0607213B1 (pt) 2017-04-04
US20070217956A1 (en) 2007-09-20
JP5964881B2 (ja) 2016-08-03
CA2594483C (en) 2014-08-26
US8906627B2 (en) 2014-12-09
ES2390800T3 (es) 2012-11-16
CA2594483A1 (en) 2006-08-03
US9110017B2 (en) 2015-08-18
AU2006207933A1 (en) 2006-08-03
CN101146595A (zh) 2008-03-19
US9638662B2 (en) 2017-05-02
US20060194331A1 (en) 2006-08-31
WO2006081558A3 (en) 2007-10-25
KR101198038B1 (ko) 2012-11-06
EP1859330A4 (en) 2008-02-27
US20100025242A1 (en) 2010-02-04
WO2006081558A2 (en) 2006-08-03
KR20070108532A (ko) 2007-11-12
DK1859330T3 (da) 2012-10-15
PL1859330T3 (pl) 2013-01-31
EP1859330A2 (en) 2007-11-28
BRPI0607213A2 (pt) 2009-08-18
US20130118901A1 (en) 2013-05-16
US8388909B2 (en) 2013-03-05
JP5897780B2 (ja) 2016-03-30
US20150336098A1 (en) 2015-11-26
US8349276B2 (en) 2013-01-08
JP2008529009A (ja) 2008-07-31
EP1859330B1 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
CN101146595B (zh) 用于在印刷电路板上操作液滴的装置和方法
CN101679078B (zh) 基于电湿润的数字微流体
US20170122904A1 (en) Fluid delivery manifolds and microfluidic systems
US11185862B2 (en) Digital microfluidic systems with electrode bus and methods for droplet manipulation
WO2002030560A2 (en) Fluidic couplers and modular microfluidic systems
CN112969536B (zh) 基板上数字微流体的多层电气连接
Li et al. Epoxy chip-in-carrier integration and screen-printed metalization for multichannel microfluidic lab-on-CMOS microsystems
US20070111353A1 (en) Hybrid microfluidic chip and method for manufacturing same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20190130