CN101013844B - 液体运动设备 - Google Patents

液体运动设备 Download PDF

Info

Publication number
CN101013844B
CN101013844B CN2007100061503A CN200710006150A CN101013844B CN 101013844 B CN101013844 B CN 101013844B CN 2007100061503 A CN2007100061503 A CN 2007100061503A CN 200710006150 A CN200710006150 A CN 200710006150A CN 101013844 B CN101013844 B CN 101013844B
Authority
CN
China
Prior art keywords
liquid
electrode
imaginary axis
end wall
electrode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007100061503A
Other languages
English (en)
Other versions
CN101013844A (zh
Inventor
大石忠宏
田中敬太
安藤正树
田中和洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN101013844A publication Critical patent/CN101013844A/zh
Application granted granted Critical
Publication of CN101013844B publication Critical patent/CN101013844B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K44/00Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
    • H02K44/02Electrodynamic pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/004Electrostatic motors in which a body is moved along a path due to interaction with an electric field travelling along the path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/08Shutters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K44/00Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
    • H02K44/08Magnetohydrodynamic [MHD] generators
    • H02K44/085Magnetohydrodynamic [MHD] generators with conducting liquids

Abstract

披露一种液体运动设备。液体运动设备包括:具有通过相互面对的第一和第二端壁以及连接第一和第二端壁的侧壁封闭的保持腔室的容器;在保持腔室内填充的极化或传导第一液体;在保持腔室内填充并防止与第一液体混合的第二液体;用于将电场施加在第一液体上的第一和第二电极;以及用于在第一电极和第二电极之间施加电压的电压施加装置。

Description

液体运动设备
技术领域
本发明涉及一种液体运动设备。
背景技术
已经提出的光学元件根据经由电场施加到极化或传导液体上而造成的电毛细管现象(湿润现象)通过改变液体的传导性或形式来改变液体的光学性能。
已经提出的液体运动装置通过将电场施加到极化或传导液体上而在所需方向上运动液体本身(参考JP-A-2004-336898(专利文件1))。
液体运动装置包括与液体(或液滴)接触的第一电极、经由绝缘层设置到液体上并在预定方向上对准的多个第二电极以及用于控制施加在第一电极和每个第二电极之间的每个电压的控制装置。在这种情况下,通过控制装置改变第二电极中施加电压的位置,绝缘层上的液体在预定方向上运动。
发明内容
需要增加液体运动的速度以便改善包括位于成像设备的拍摄光学系统的光轴上的液体运动装置的快门的响应性能,其中液体在垂直于光轴的方向上运动。
但是,过去的技术限制了施加在液体上电场强度的增加,还限制了液体运动速度的增加。
因此,希望提出一种液体运动设备,该设备有利于增加液体运动的速度。
按照本发明的实施例,提供一种液体运动设备,该设备包括具有通过相互面对的第一和第二端壁以及连接第一和第二端壁的侧壁封闭的保持腔室的容器、在保持腔室内填充的极化或传导第一液体、在保持腔室内填充并防止与第一液体混合的第二液体、用于将电场施加在第一液体上的第一和第二电极以及用于在第一电极和第二电极之间施加电压的电压施加装置,其中第一和第二电极沿着在第一和第二端壁相互面对并作为垂直于容器的厚度方向的方向的方向上延伸的虚轴放置,将通过电压施加装置施加电压的位置改变到第一和第二电极延伸方向上使得第一液体接触第一和第二端壁两者,并且沿着虚轴运动通过第二液体包围的整个第一液体,并且第二电极设置在面向保持腔室的第一端壁的内表面以及第二端壁的内表面上,并且包括位于虚轴延伸方向上的多个第二电极主体。
在按照本发明实施例的液体运动设备中,第一液体面向第一和第二端壁上的两个第二电极主体。因此,通过施加在第一电极和第二电极之间的电压产生的电场可施加在第一液体的较宽区域上。因此,较大的力施加在第一液体上,这有利于增加第一液体的运动速度。
附图说明
图1A是描述液体运动原理的截面图,并且图1B是由图1A的线A-A截取的截面图;
图2A是表示液体运动设备10的构造的纵向截面图,并且图2B是由图2A的线A-A截取的截面图;
图3A是根据箭头C的视图;并且图3B是由图2A的线D-D截取的截面图;
图4A是液体运动设备10的截面图,并且图4B是由线D-D截取的截面图;
图5是表示其中适用于成像设备的拍摄光学系统的液体运动设备10的实例的构造图;
图6A是按照第二实施例的液体运动设备10的构造的纵向截面图,并且图6B是由图6A的线A-A截取的截面图;
图7A是根据图6A箭头C的视图,并且图7B是由图6A的线D-D截取的截面图;
图8是表示按照第三实施例的液体运动设备10的第一端壁24的内表面上的第二电极20的形式的平面图;
图9是表示第二端壁26的内表面上的第一和第二电极18和20的形式的平面图;
图10是表示按照第四实施例的液体运动设备10的第一端壁24的内表面上的第二电极20的形式的平面图;
图11是表示第二端壁26的内表面上的第一和第二电极18和20的形式的平面图;
图12是说明液体运动设备10的操作的示意图;
图13是说明液体运动设备10的操作的示意图;
图14是说明液体运动设备10的操作的示意图;
图15是表示按照第五实施例的液体运动设备10的构造的示意图;
图16是表示按照第六实施例的液体运动设备10的构造的示意图;
图17是表示按照第七实施例的液体运动设备10的第二端壁26的内表面上的第一和第二电极18和20的形式的平面图;
图18A是按照第七实施例在液体运动设备10用作光圈的情况下表示原理的视图,并且图18B是图18A的截面图。
具体实施方式
将首先描述通过电场进行液体运动的操作原理。
图1A是描述液体运动原理的截面图,并且图1B是由图1A的线A-A截取的截面图。
如图1A和1B所示,保持腔室1通过相互面对并且其中具有空间g的第一和第二端壁1A和1B以及连接第一和第二端壁1A和1B侧壁1C紧密封闭。
第一电极2设置在第一端壁1A的整个内表面上,并且第一电极2面对保持腔室1的表面通过排水薄膜3A覆盖。
第二电极4设置在第二端壁11B的内表面上,并且第二电极4包括沿着在垂直于第一和第二端壁1A和1B相互面对的方向的方向上延伸的虚轴L对准的两个电极主体4A和4B。
两个电极主体4A和4B的表面和第二端壁1B的内表面的整个区域通过绝缘薄膜5覆盖,并且绝缘薄膜5面对保持腔室1的表面的整个区域通过排水薄膜3B覆盖。
极化和传导第一液体6定位在绝缘薄膜5的表面上。第一电极2经由排水薄膜3A面向第一液体6,并且第二电极4经由绝缘薄膜5和排水薄膜3B面向第一液体6。
保持腔室1填充围绕第一液体6的第二液体7。第二液体7不与第一液体混合。
第一电极2和第二电极4的两个电极主体4A和4B最初接地,并且在该状态下的第一液体6横过一个电极主体4A的整个区域以及靠近另一电极主体4B靠近电极主体4A的部分定位。
在这种状态下,由于表面张力,第一液体6在平面状态下具有如图1A和1B实线所示的圆形形式。
这里在电压E施加的另一电极主体4B上时,绝缘薄膜5面向第一液体6的位置正性充电。因此,电场(静电力)施加在第一液体6面向绝缘薄膜5的位置上,并且负电荷(即第一液体6的分子)拉到第一液体6面向绝缘薄膜5的位置上。
接着,第一液体6改变形式并且如图1A和1B虚线所示朝着电极主体4B拉动。在结束时,通过第二液体7围绕的所有第一液体6在虚轴L的延伸方向上从所述一个电极主体4A运动到所述另一电极主体4B。
排水薄膜3A和3B用来在第一液体6在第一和第二电极2和4上运动时减小液体6和第一和第二端壁1A和1B之间的造成的阻力,使得第一液体6可容易运动。
以此方式,第一液体6经由第一和第二电极2和4通过将电场施加在极化或传导第一液体6上来运动。
(第一实施例)
接着,将描述此实施例的液体运动设备10。
按照此实施例,液体运动设备10用作快门。
图2A是表示液体运动设备10的构造的纵向截面图,并且图2B是由线A-A截取的截面图。
图3A是根据图2A的箭头C的视图;并且图3B是由图2A的线D-D截取的截面图。
如图2A和2B所示,液体运动设备10包括容器12、第一液体14、第二液体16、第一电极18、第二电极20和电压施加区段22。容器12具有相互面对并平行延伸的第一和第二端壁24和26、连接第一和第二端壁24和26的侧壁28以及通过第一和第二端壁24和26以及侧壁28紧密封闭的保持腔室30。
表达方式“容器12的厚度方向”指的是第一端壁24和第二端壁26相互面对的方向。
按照此实施例,第一和第二端壁24和26具有相同尺寸的相同的矩形板形式。侧壁28具有沿着第一和第二端壁24和26的边缘的矩形框架形式。保持腔室30的区段具有矩形扁平柱状形式。
第一和第二端壁24和26以及侧壁28包括绝缘材料,并且第一和第二端壁24和26包括使得光穿透的透明材料。
第一和第二端壁24和26可包括透明和绝缘合成树脂材料或透明玻璃材料。
第一液体14是极化或传导的,并且填充在保持腔室30内。第二液体16不与第一液体14混合,并且填充在保持腔室30内。
第一液体14和第二液体16具有大致相同的比重,并且第一液体14的透射率小于第二液体16的透射率。
按照此实施例第一液体14通过混合含有不使得光穿过到含有纯水、乙醇和乙二醇的液体内的材料的颗粒来形成。
颗粒可以是碳黑。如果使用碳黑,在碳黑表面上进行亲水涂覆处理,使得碳黑可均匀混合到第一液体14内。亲水涂覆处理可例如通过在碳黑表面上形成亲水组来进行。
按照此实施例,第二液体16包括透明硅油。
使用例如第二液体16中所含硅油的具有低粘度的液体可减小第一和第二液体14和16之间粘性阻力,并缓解第一液体14和第一和第二端壁24和26之间的摩擦,这有利于通过增加第一液体14的运动速度来改善响应性能。
可用作第一液体14的液体不局限于第一实施例中所述的液体,而可以例如是硝基甲烷、醋酸酐、乙酸甲酯、乙酸乙酯、甲醇、乙腈、丙酮、乙醇、丙腈、tetrohydrofuran、n-己烷、2-丙醇、2-丁酮、n-丁腈、1-丙醇、1-丁醇、二甲亚砜、氯苯、乙烯乙二醇、甲酰胺、硝基苯、碳酸丙烯、1,2-二氯乙烷、碳酸盐二硫化物、氯仿、溴苯、四氯化碳、三氯醋酸酐、甲苯、苯、乙二胺、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、磷酸三丁酯、吡啶、苯基氰、苯胺、1,4-二氧己环或者六甲基磷酰胺。
适用于第二液体16的液体可以例如是硅、癸烷基、辛烷基、壬烷基或庚烷基。
每种第一液体14和第二液体16可以是单种液体或者多种液体的混合物。换言之,第一液体14和第二液体16可以只需要具有大致相同的比重。
第一和第二电极18和20用来将电场施加到第一液体14上。
第一和第二电极18和20沿着在垂直于容器12的厚度方向(即第一和第二端壁24和26相互面对的方向)的方向上延伸的虚轴L放置。按照此实施例,虚轴L延伸的方向平行于容器12的长边的方向。
如图2B和3B所示,按照此实施例,第一电极18在第二端壁26(第二端壁26面对保持腔室30的内表面)上沿着虚轴L线性(直线)延伸。
第一电极18在垂直于第二端壁26的虚轴L的宽度方向上放置在中心线上。
第二电极20设置在面对保持腔室30的第一端壁24的内表面和第二端壁26的内表面两者上。如图2A和图3A和3B所示,第二电极20在虚轴L延伸方向上包括多个第二电极主体32。
如图3A所示,按照此实施例,第一端壁24的内表面上的第二电极主体32具有相同尺寸的相同矩形形式,并且沿着虚轴L等距离隔开。
如图3B所示,第二端壁26的内表面上的第二电极主体32具有相同尺寸的相同矩形形式,并且在穿过第一电极18的宽度方向上的两侧分开。
如图2A所示,相互面对的第一端壁24上的第二电极主体32以及第二端壁26上的第二电极主体32定位成在容器12的厚度方向上观看时在边缘处相互配合。
在图3A和3B中,参考标号3203表示从第二电极主体32延伸的配线区段。
第一和第二电极18和20可包括使得光透过的例如I TO薄膜(氧化铟锡薄膜)的传导材料。
如图2A和2B所示,电压施加区段22设置在容器12的外侧,并且包括经由配线区段3202电连接到第一电极18上的接地端子2202以及电连接到第二电极主体32上的多个电压输出端子2204。
电压施加区段22构造成能够经由电压输出端子2204将电压E有选择地施加到每个第二电极主体32,并且将施加电压的位置改变到第一和第二电极18和20的延伸方向上。
如图2A和2B所示,绝缘薄膜34设置在面向保持腔室30的第一端壁24的内表面以及该内表面上的第二电极主体32上。
绝缘薄膜34只设置在面向保持腔室30的第二端壁26的内表面上的第二主体32上。
因此,电压施加在第一电极18和第二电极20的第二电极主体32之间,由此绝缘薄膜34的表面可例如正性充电。因此,电场施加在第一液体14上,并且电场(静电力)作用在第一液体14的分子上。因此,第一液体14运动。
按照此实施例,使得光透过的透明排水薄膜36覆盖第一端壁24的内表面上的绝缘薄膜34的整个区域。
使得光透过的透明排水薄膜36覆盖第二端壁26的内表面上的绝缘薄膜34的整个区域以及第一电极18的整个区域。
排水薄膜36覆盖侧壁28的内表面。
排水薄膜36构造成使得与第二液体16的湿润性能可以高于第一液体14的湿润性能。换言之,第二液体16与排水薄膜36的接触角度构造成小于第一液体与排水薄膜36的接触角度。
在第一液体14在第一和第二电极18和20上运动时,排水薄膜36减小第一液体14以及第一和第二端壁24和26之间造成的阻力,使得第一液体14可容易运动。
排水薄膜36是亲水薄膜,并且可以通过燃烧主要含有硅的材料来形成,或者通过形成含有无定形氟塑料的材料来形成。过去多种公知的材料可用于排水薄膜36。
接着将描述液体运动设备的操作。
图4A是液体运动设备10的截面图,并且图4B是由线D-D截取的截面图。
为了方便描述,将参考标号32-1、32-2、32-3以及32-4在虚轴L的延伸方向上从一侧到另一侧顺序给予第二电极主体32。
假设第一液体14在延伸方向上靠近虚轴L的一侧最初定位在第一和第二端壁24和26的两个第二电极主体32-1之间的位置上。
在这种状态下,电压施加区段22将电压E施加在延伸方向上最靠近虚轴L的第二电极主体32-1上,并且将接地电位施加在其它第二电极主体32-2到32-4上。
那么,通过施加在第一电极18和第二电极主体32-1上的电压E产生的电场作用在面向第二电极主体32-1的第一液体14上,由此第一液体14不运动,并且可保持原位。因此,第一液体14的大部分面向第二电极主体32-1,并且第一液体的一部分面向相邻的电极主体32-2。
接着,在电压施加区段22将电压E施加在靠近第二电极主体32-1的第二电极主体32-2上,并且将接地电位施加在其它第二电极主体32-1、32-3、32-4上,即在施加电压的位置改变到第一和第二电极18和20延伸方向上时,通过施加在第一电极18和第二电极主体32-2上的电压E产生的电场作用在位于面向第二电极主体32-2的位置上的第一液体14上。因此,通过第二液体16包围的整个第一液体14朝着延伸方向上的另一虚轴L运动。因此,第一液体14的大部分面向第二电极主体32-2,并且第一液体的一部分面向相邻的第二电极主体32-1、32-3。
接着,在电压施加区段22将电压E施加在靠近第二电极主体32-2的第二电极主体32-3上,并且将接地电位施加在其它第二电极主体32-1、32-2、32-4上,即在施加电压的位置改变到第一和第二电极18和20延伸方向上时,通过施加在第一电极18和第二电极主体32-3上的电压E产生的电场作用在位于面向第二电极主体32-3的位置上的第一液体14上。因此,通过第二液体16包围的整个第一液体14朝着延伸方向上的另一虚轴L运动。因此,第一液体14的大部分面向第二电极主体32-3,并且第一液体的一部分面向相邻的电极主体32-2、32-4。
接着,在电压施加区段22将电压E施加在靠近第二电极主体32-3的第二电极主体32-4上,并且将接地电位施加在其它第二电极主体32-1、32-2、32-3上,即在施加电压的位置改变到第一和第二电极18和20延伸方向上时,通过施加在第一电极18和第二电极主体32-3上的电压E产生的电场作用在位于面向第二电极主体32-4的位置上的第一液体14上。因此,通过第二液体16包围的整个第一液体14朝着延伸方向上的另一虚轴L运动。因此,第一液体14的大部分面向第二电极主体32-4,并且第一液体的一部分面向相邻的电极主体32-4。
如上所述,将通过电压施加区段22施加电压的位置改变到第一和第二电极电极18和20延伸的方向上,使得与第一和第二端壁24和26接触并通过第二液体16包围的整个第一液体14沿着虚轴L运动。
为了颠倒第一液体14的运动方向,可以颠倒通过电压施加区段22施加电压的位置改变的方向。
液体运动设备10适用于例如数字静态照相机或摄像机的成像设备的拍摄光学系统。
图5是表示其中适用于成像设备的拍摄光学系统的液体运动设备10的实例的构造图。
如图5所示,成像设备100包括对物品图像成像的例如CCD的成像元件102以及将物品图像传递到成像元件102上的拍摄光学系统104。
拍摄光学系统104在光轴G上从物品到拍摄元件102顺序具有第一透镜组106、第二透镜组108、第三透镜组110、第四透镜组112和过滤器组114。
在此实例中,第一透镜组106和第三透镜组110不在光轴方向上运动,并且第二透镜组108作为变焦透镜在光轴的方向上运动。第四透镜组112作为变焦透镜在光轴的方向上运动。
通过第一透镜组106传导的来自于物品的光通量通过第二透镜组108变成平行光通量,通过第三透镜组110传导,并经由第四透镜组112和过滤器组114到达成像元件102的成像平面102。
液体运动设备10放置在过滤器组114和成像元件102之间,并且第一液体14运动,其中虚轴L平行于垂直于拍摄光学系统104的光轴G的平面。因此,第一液体14可中断传导到成像元件102的光通量。
因此,在液体运动设备10中,在光通量通过第一液体14的运动中断时,可以控制辐射到成像平面102A的时间(即成像元件102的曝光时间)。
孔径时间可通过在虚轴L的延伸方向上前后运动第一液体14来控制。
如上所述,按照此实施例,第二电极20设置在第一端壁24的内表面和第二端壁26的内表面两者上,并包括位于虚轴L的延伸方向上的多个第二电极主体32。第一液体14总是面向第一和第二端壁24和26的两个第二电极主体32。因此,通过施加在第一电极18和第二电极20之间的电压产生的电场作用在第一液体14的较宽区域上。因此,作用在第一液体14上的力可以增加,这有利于增加第一液体14的运动速度。
更详细来说,在电压施加在第二电极20上时将第一液体14抽吸到第二电极20上的力通过电能梯度(电位)来产生。
过去的液体运动设备只具有位于与第一液体14接触的表面之一上的绝缘薄膜。
因此,由绝缘薄膜34内积累电能产生的力是本发明实施例其绝缘薄膜位于接触第一液体14的两个表面上的情况的1/2。
通过电能梯度对第一液体14产生的力如下表示:
Fw=ε0εrV2W⊥/t      (1)
Fs=(1/2)ε0εrV2W⊥/t=Fw/2       (2)
其中等式(1)表示在此实施例中第二电极20设置在两个表面上是的力Fw,并且等式(2)表示在现已技术中第二电极只设置在一个表面上的力Fs。
在等式中,Fw和Fs是第一液体14接收的力(N)。V是施加电压(V)。ε0是真空下的介电常数8.85×10-12(F/m)。εr是绝缘薄膜34的特定介电常数。
Figure S07106150320070212D00010174153QIETU
是第一液体14在垂直于虚轴L的宽度方向上在第二电极主体32上所占据的电极宽度(m)(第二电极20在垂直于第一液体14的运动方向的方向上的宽度)。T是绝缘薄膜34的厚度(m)。
换言之,按照此实施例,作用在第一液体14上的力是过去液体运动设备的两倍,这有利于增加第一液体14的运动速度。
按照此实施例,线性形式的第一电极18可减小第一电极18(接地电极)的区域尺寸,并且增加第二电极20的区域尺寸。因此,通过第二电极20的较大电能可在绝缘薄膜34中积累。换言之,通过施加在第一电极18和第二电极20之间的电压产生的电场可作用在第一液体14的较大区域上。因此,力可作用在第一液体14上,这有利于增加第一液体14的运动速度。
已经描述的是按照此实施例四个第二电极主体32沿着虚轴L设置,在沿着虚轴L的第二电极主体32的数量增加时,第一液体14的接近距离增加。由于第一液体14的运动速度增加,第二电极主体32的数量增加有利于增加第一液体14的运动速度。
在如现有技术所述设置一个第二电极时,作用在第一液体上的电场方向是一个。因此,在电场起作用以便运动第一液体时,第一液体的形式沿着第二电极膨胀。因此,第一液体的形式缺乏稳定性,这不利于通过快门内的第一液体可靠地中断光通量。
另一方面,按照此实施例,第二电极20的第二电极主体32设置在第一端壁24的内表面和第二端壁26的内表面两者上。因此,两个方向上的电场从两个第二电极主体32作用到第一液体14上,并且第一液体14可以运动,其中保持第一液体14的形式的稳定性。因此,光通量可以在快门中可靠地中断,这有利于保持光学性能。
(第二实施例)
下面将描述第二实施例。
第二实施例是第一实施例的变型实例,并且不同于第一实施例之处在于第一电极18和第二电极20的形式。
图6A是按照第二实施例的液体运动设备10的构造的纵向截面图,并且图6B是由图6A的线A-A截取的截面图。图7A是根据图6A箭头C的视图,并且图7B是由图6A的线D-D截取的截面图。在此实施例的描述中,相同的参考标号给予与第一实施例类似或相同的部件。
如图6A和6B所示,类似于第一实施例,第一电极18和第二电极20在第一和第二端壁24和26相互面对的方向上沿着在垂直于容器12的厚度方向的方向上延伸的虚轴L放置。虚轴L的延伸方向和容器12的长边方向平行。
按照第二实施例,第一电极18沿着虚轴L线性延伸,并且可以是例如金线的线性传导构件。
按照此实施例,如图6A和6B所示,第一电极18在垂直于虚轴L的宽度方向上在靠近第一端壁24一侧的位置处沿着虚轴L延伸,如图7B所示,在作为第一和第二端壁24和26相互面对的方向的厚度方向上在容器12的中部。第一电极18与第一和第二端壁24和26的内表面隔开,并且与沿着虚轴L延伸的两个侧壁28的内表面隔开。
注意到,如果第一电极18是例如金线的线性传导构件,光通过第一电极18中断。因此,第一电极18放置在离开拍摄光学系统的光学路径的位置上。
第二电极20设置在面向保持腔室30的第一端壁24的内表面和第二端壁26的内表面两者上。如图6A以及7A和7B所示,第二电极20包括位于虚轴L延伸方向上的多个第二电极主体32。
按照第二实施例,如图7A所示,第一端壁的内表面上的第二电极主体32具有相同尺寸的相同矩形形式,并且沿着虚轴L等距离隔开。
如图7B所示,第二端壁26的内表面上的第二电极主体32具有相同尺寸的相同矩形形式,并且沿着虚轴L等距离隔开。
如图6A所示,相互面对的第一端壁24上的第二电极主体32以及第二端壁26上的第二电极主体32定位成在容器12的厚度方向上观看时在边缘处相互配合。
类似于第一实施例,第一和第二电极18和20包括传导材料,这使得光透过。
第一电极18连接到电压施加区段22的接地端子2202上,第二电极20的第二电极主体32经由配线区段3202连接到电压施加区段22的电压输出端子2204上。
类似于第一实施例,电压施加区段22构造成能够经由电压输出端子2204将电压E有选择地施加到每个第二电极主体32,并且将施加电压的位置改变到第一和第二电极18和20的延伸方向上。
类似于第一实施例,绝缘薄膜34设置在面向保持腔室30的第一端壁24的内表面以及该内表面上的第二电极主体32上。
绝缘薄膜34只设置在面向保持腔室30的第二端壁26的内表面上的第二主体32上。
因此,电压施加在第一电极18和第二电极20的第二电极主体32之间,由此绝缘薄膜34的表面可例如正性充电。因此,电场施加在第一液体14上,并且电场(静电力)作用在第一液体14的分子上。因此,第一液体14运动。
使得光透过的透明排水薄膜36覆盖第一端壁24的内表面上的绝缘薄膜34的整个区域。使得光透过的透明排水薄膜36覆盖第二端壁26的内表面上的绝缘薄膜34的整个区域。
排水薄片36覆盖侧壁28的内表面。
同样,按照第二实施例,类似于第一实施例,将通过电压施加区段22施加电压的位置改变到第一和第二电极电极18和20延伸的方向上,使得与第一和第二端壁24和26接触并通过第二液体16包围的整个第一液体14沿着虚轴L运动。
因此,第二实施例还提供与第一实施例相同的效果。
另外,按照第二实施例,第一电极18与第一和第二端壁24和26的内表面隔开,与第一实施例相比,这有利于提供第二电极主体32的较大区域。因此,通过施加在第一电极18和第二电极20之间的电压产生的电场作用在第一液体14上,这有利于增加第一液体14的运动速度。
(第三实施例)
下面将描述第三实施例。
第三实施例是第一实施例的变型实例,并且不同于第一实施例之处在于第一电极18和第二电极20的形式。
图8是表示按照第三实施例的液体运动设备10的第一端壁24的内表面上的第二电极20的形式的平面图。图9是表示第二端壁26的内表面上的第一和第二电极18和20的形式的平面图。
如图8和9所示,第二电极20设置在第一端壁24的内表面和第二端壁26的内表面两者上。第二电极20包括在虚轴L的延伸方向上的多个电极主体32。
第二电极主体32具有相同尺寸的相同形式,并且沿着虚轴L等距离隔开。凹口和突出部3210在第二电极主体32相互靠近的位置上并在垂直于虚轴L延伸方向的方向上延伸,并且相邻的第二电极主体32设置相互相关的凹口和突出部3210。
相互面对的第一端壁24上的第二电极主体32和第二端壁26上的第二电极主体32定位成在容器12的厚度方向上观看时在边缘处相互配合。
如图9所示,第一电极18包括在第二端壁26上在虚轴L的延伸方向上隔开的多个第一电极主体38。
按照第三实施例,第一电极主体38通过沿着虚轴L延伸的公共配线区段3810公共连接。
类似于第一实施例,第一和第二电极18和20包括使得光透过的传导材料。
第一实施例18的第一电极主体38经由公共配线区段3810公共连接到电压施加区段22的接地端子2202上,并且第二电极20的第二电极主体32经由配线区段3202连接到电压施加区段22的电压输出端子2204上。
类似于第一实施例,电压施加区段22构造成能够经由电压输出端子2204将电压E有选择地施加到每个第二电极主体32,并且将施加电压的位置改变到第一和第二电极18和20的延伸方向上。
类似于第一实施例,未示出的绝缘薄膜设置在面向保持腔室30的第一和第二端壁24和26的内表面以及内表面上的第二电极主体32上。
没有绝缘薄膜设置在第二端壁26的内表面上第一电极主体38上。
因此,电压施加在第一电极18和第二电极20的第二电极主体32之间,由此绝缘薄膜的表面可例如正性充电。因此,电场施加在第一液体14上,并且电场(静电力)作用在第一液体14的分子上。因此,第一液体14运动。
类似于第一实施例,使得光透过的未示出的透明排水薄膜覆盖第一端壁24的内表面上的绝缘薄膜34的整个区域。
使得光透过的透明排水薄膜覆盖第二端壁26的内表面上的绝缘薄膜的整个区域和第一电极18的整个区域。
同样按照第三实施例,类似于第一实施例,将通过电压施加区段22施加电压的位置改变到第一和第二电极电极18和20延伸的方向上,使得与第一和第二端壁24和26接触并通过第二液体16包围的整个第一液体14沿着虚轴L运动。
因此,第三实施例还提供与第一实施例相同的效果。
为了造成电场作用在第一液体14上,在第一液体14的较大部分位于第二电极主体32之一处时,第一液体14在虚轴L方向上的部分需要面对相邻的电极主体32。按照第一和第二实施例,由于每个第二电极主体32具有矩形形式,在虚轴L方向上的第二电极主体32之间的空间需要小于第一液体14的直径。
另一方面,按照第三实施例,由于相邻第二电极主体32的凹口和突出部3210相互相关,在虚轴L方向上的第二电极主体32之间的空间可以等于或大于第一液体14的直径。在这种情况下,由于大部分第一液体14位于第二电极主体32之一处,虚轴L方向上的第一液体14的一部分可面对相邻的第二电极主体32,这有利于增加第二电极主体32之间的空间。
(第四实施例)
下面将描述第四实施例。
第四实施例是第一实施例的变型实例,并且不同于第一实施例之处在于第二电极20的形式。
图10是表示按照第四实施例的液体运动设备10的第一端壁24的内表面上的第二电极20的形式的平面图。图11是表示第二端壁26的内表面上的第一和第二电极18和20的形式的平面图。
如图10和11所示,第二电极20设置在第一端壁24的内表面和第二端壁26的内表面两者上。第二电极20包括在虚轴L延伸方向上的多个第二电极主体32。
第二电极主体32具有相同尺寸的相同形式,并且沿着虚轴L等距离隔开。
在垂直于虚轴L的宽度方向上第一液体14在第二电极主体32上占据的尺寸此后称为电极宽度W⊥。
第二电极主体32包括在垂直于虚轴L的延伸方向上的宽度方向上具有至少三个区段的多个电极主体。按照第四实施例,每个第二电极主体32包括三个电极主体区段4002、4004和4006。
如图10和11所示,在多个电极主体区段4002、4004和4006中,垂直于虚轴L的宽度方向上的第一端壁24的两侧上的电极主体区段4002、4004和4006以及垂直于虚轴L的宽度方向上的第二端壁26的两侧上的电极主体区段4002和4006放置在可以接触第一液体14的两侧的位置上。
相互面对的第一端壁24上的第二电极主体32和第二端壁26上的第二电极主体32定位成在容器12的厚度方向上观看时在边缘处相互配合。
相互面对的第一端壁24上的电极主体区段4002、4004和4006和第二端壁26上的电极主体区段4002、4004和4006定位成在容器12的厚度方向上观看时在边缘处相互配合。
如图11所示,第一电极18在第二端壁26(在第二端壁26面对保持腔室30的内表面上)上沿着虚轴L线性(直线)延伸。
在第二端壁26上,如图11所示,一个电极主体区段4002以及两个电极主体区段4004和4006在穿过第一电极18的宽度方向上的一个和其它位置处隔开。
在图10和11中,参考标号4010指的是从电极主体区段4002、4004和4006延伸的配线区段。
第一电极18连接到电压施加区段22的接地端子2202上,并且第二电极主体32的电极区段4002、4004和4006经由配线区段4010连接到电压施加区段22上。
按照此实施例,电压施加区段22构造成能够经由设置用于每个配线区段4010的开关42将电压E有选择地施加到每个电极主体区段4002、4004和4006,并且通过有选择地接通和断开开关42将施加电压的位置改变到第一和第二电极18和20的延伸方向上。
类似于第一实施例,第一和第二电极18和20包括使得光透过的传导材料。
类似于第一实施例,未示出的绝缘薄膜设置在面向保持腔室30的第一和第二端壁24和26的内表面以及内表面上的第二电极主体32上。
没有绝缘薄膜设置在第二端壁26的内表面上第一电极主体38上。
因此,电压施加在第一电极18和第二电极20的第二电极主体32之间,由此绝缘薄膜的表面可例如正性充电。因此,电场施加在第一液体14上,并且电场(静电力)作用在第一液体14的分子上。因此,第一液体14运动。
类似于第一实施例,使得光透过的未示出的透明排水薄膜覆盖第一端壁24的内表面上的绝缘薄膜34的整个区域。
使得光透过的透明排水薄膜覆盖第二端壁26的内表面上的绝缘薄膜的整个区域和第一电极18的整个区域。
接着,描述液体运动设备10的操作。
图12、13和14是描述液体运动设备10的操作的说明视图。
为了便于描述,在开关42中处于接通状态的开关42画上圆圈。
下面将描述用于将电压E施加到第二端壁26上的电极主体区段4002、4004和4006上的操作,而用于将电压E施加到第一端壁24上的电极主体区段4002、4004和4006上的操作的描述将被省略,这是由于它们是相同的。
最初,如图11所示,第一液体14在虚轴L的方向上定位在三个第二电极20的中央第二电极20上。
在这种情况下,与中央电极主体区段4004相对应的开关42只在定位有第一液体14的第二电极20内接通,并且电压E施加在电极主体区段4004上。因此,电极主体区段4004和第一电极18之间产生的电场作用在第一液体14上。因此,第一液体14具有圆形形式,并在中央第二电极20上保持原位。
接着,如图12所示,除了与电极主体区段4004相对应的开关42,与电极主体区段4004两侧上的电极主体区段4002和4006相对应的两个开关42接通。
因此,电压E施加到所有的三个电极主体4002、4004和4006上。因此,电极主体区段4004和第一电极18之间产生的电场以及电极主体区段4002和4006以及第一电极18之间产生的电场作用在第一液体14上。因此,力在垂直于虚轴L的方向上施加在第一液体14上。因此,第一液体14的形式从圆形形式改变成在垂直于虚轴L的方向上延伸的椭圆形形式。
接着,如图13所示,在所有的开关42与中央第二电极20的三个电极主体区段4002、4004和4006相对应时,与相邻第二电极20的电极主体区段4002、4004、4006相对应的所有开关42接通。
接着,电压E施加在相邻第二电极20的所有三个电极主体区段4002、4004、4006上,由此三个电极主体区段4002、4004、4006和第一电极18之间电场作用其上。因此,力在垂直于虚轴L的方向上施加在第一液体14上。因此,垂直于虚轴L的方向延伸的椭圆形形式的第一液体14从中央第二电极20运动到相邻的第二电极20。
接着,如图14所示,在与相邻第二电极20的电极主体4002、4004和4006相对应的开关42中,只有与电极主体区段4004相对应的开关42接通,并且与其它两个电极主体区段4002和4006相对应的开关42断开。
因此,电压E施加在电极主体4004上,由此只有电极主体区段4004和第一电极18之间产生的电场作用在第一液体14上。因此,第一液体14的形式从椭圆形形式改变成圆形形式,并且第一液体14保持在相邻第二电极20上的一个位置上。
除了第四实施例明显地提供与第一实施例相同的效果之外,其中在第一电极14从一个第二电极20运动到相邻的第二电极20时,通过将电压E施加在第二电极20的所有三个电极主体区段4002、4004和4006上,由于第一液体14的形式从圆形形式改变成在垂直于虚轴L的方向上延伸的椭圆形形式,第一液体14在垂直于虚轴L的宽度方向上占据第二电极32的电极宽度W⊥增加。
这里,由于施加在第一液体14上的力Fw与通过等式(1)表示电极宽度W⊥成正比,作用在第一液体14上的力增加。因此,增加作用在第一液体14上的力有利于增加第一液体14的运动速度。
(第五实施例)
下面将描述第五实施例。
第五实施例是第一实施例的变型实例。第五实施例不同于第一实施例之处在于,按照第一实施例,第一液体14的透射率低于第二液体16的透射率,而按照第五实施例,第二液体16的透射率低于第一液体14的透射率。其它与第一实施例相同。
图15是表示按照第五实施例的液体运动设备10的构造的示意图。
如图15所示,第一液体14是透明、极化和传导的,并且填充在保持腔室30内。
第二液体16不与第一液体14混合并填充在保持腔室30内。
第一液体14和第二液体16具有大致相同的比重,并且第二液体16的透射率低于第一液体14的透射率。
按照此实施例,第二液体16可包括透明硅油,并且通过将具有亲水处理表面的染色剂分布在第二液体16中,第二液体16的透射率低于第一液体的透射率。
根据等式(1),用于运动第一液体14经过距离L(m)的时间T如下表示:
T=(1/V)(2LMt/ε0εrW⊥)1/2[sec](3)
例如,在运动距离L=1(mm)时,第一液体14的质量M是0.5(mg),绝缘薄膜的厚度是1(μm),绝缘薄膜的特定介电常数εr是3,并且第一液体14的直径是1(mm),其中第一液体14的直径是作为第一液体14在垂直于虚轴L的宽度方向上占据第二电极32的电极宽度W⊥,根据等式(3),T=194/V(msec)。
例如,在施加电压是100(V)时,第一液体14以大约1.9(msec)运动。
使用具有高介电常数的绝缘薄膜可减小电压。
实际上,由于来自于第二液体16的粘滞曳力和第一液体14和与第一液体14接触的排水薄膜之间的摩擦对于第一液体14的运动有影响,该速度可低于1.9(ms)。但是,使用具有高排水性的排水薄膜和具有低粘度的第二液体16(例如具有低粘度的硅油)可消除这种影响。
第五实施例也提供与第一实施例相同的效果。
类似于第一实施例,第五实施例的液体运动设备10还可适用于图5所示的成像设备100的快门。
第五实施例的液体运动设备10放置在过滤器组114和成像元件102之间,并且第一液体14运动,其中虚轴L平行于垂直于拍摄光学系统104的光轴G的平面。因此,光轴G上的第一液体14可将光通量传导到成像元件102。由于第一液体14离开光轴G,第二液体16可中断传导到成像元件102的光通量。
因此,同样在第五实施例的液体运动设备10中,在光通量通过第一液体14中断时,可以控制辐射到成像平面102A的时间(即成像元件102的曝光时间)。
孔径时间可通过在虚轴L的延伸方向上前后运动第一液体14来控制。
(第六实施例)
下面将描述第六实施例。
第六实施例是第一实施例的变型实例,并且使用具有不同透射率的多种第一液体14进行ND过滤器的功能(中性过滤器)。
图16是表示按照第六实施例的液体运动设备10的构造的示意图。
如图16所示,四种第一液体1402、1404、1406、1408是极化和传导的,并填充在保持腔室30内。
第二液体16是透明的,不与四种第一液体1402、1404、1406、1408混合,并填充在保持腔室30内。
四种第一液体1402、1404、1406、1408和第二液体16具有大致相同的比重。
在四种第一液体1402、1404、1406、1408的透射率是T1、T2、T3、T4时,透射率T1、T2、T3、T4低于第二液体16的透射率,并且形成为T1<T2<T3<T4。
第二电极20包括位于第一和第二端壁24和26上的相同形式和相同尺寸的五个第二电极主体3202、3204、3206、3208和3210。
相互面对的第一端壁24的第二电极主体3202、3204、3206、3208和3210和第二端壁26上的第二电极主体3202、3204、3206、3208和3210定位成在容器12的厚度方向上观看时在边缘处相互配合。
按照此实施例,四个第二电极主体3202、3204、3206和3208靠近一个第二电极主体3210的四侧放置。第一电极18在第二端壁26上线性延伸,以便将中央第二电极主体3210分成四个,每个剩余的第二电极主体3202、3204、3206和3208分成两个。
第一液体1402、1404、1406和1408放置在第二电极主体3202、3204、3206和3208之上。
通过未示出的电压施加区段将电压E有选择地施加在第二电极主体3202、3204、3206、3208和3210上,使得第一液体1402、1404、1406和1408在第二电极主体3201上有选择地运动。
第六实施例明显提供与第一实施例相同的效果。另外,按照第六实施例,通过将具有不同透射率的多种第一液体1402、1404、1406和1408输入/抽出光学路径,中央第二电极主体3210在成像设备的拍摄光学系统的光学路径上的定位可进行ND过滤器的功能。
(第七实施例)
下面将描述第七实施例。
第七实施例是第一实施例的变型实例,并且不同于第一实施例之处只在于第二电极20分成比第一液体14的直径小的尺寸的电极。
图17是表示按照第七实施例的液体运动设备10的第二端壁26的内表面上的第一和第二电极18和20的形式的平面图。
如图17所示,在此实施例中,电极宽度W”小于第一液体14的直径,并且等于或小于第一液体14的直径的1/4,其中电极宽度W”是虚轴L的延伸方向上的第二电极20的多个第二电极主体32的每个主体的尺寸。
因此,按照第七实施例,第一液体14可有利地以比第一实施例小的步运动,明显地提供与第一实施例相同的效果。
通过以较小的步运动第一液体14,液体运动设备10可用作光圈,如下所述。
图18A是在液体运动设备10按照第七实施例用作光圈的情况下表示原理的视图,并且图18B是图18A的截面图。
如图18A和18B所示,两个液体运动设备10在容器12的厚度方向上叠置固定,使其虚轴L可以平行。
类似于第五实施例,第一液体14和第二液体16具有大致相同的比重,并且第二液体16的透射率低于第一液体14的透射率。
由于这种构造,电压E施加到两个液体运动设备10的第二电极主体32上,并且第一液体14在虚轴L延伸方向上以较小的步运动,使得第一液体14如图18B所示的重叠区域的尺寸增加/减小。因此,入射光量可以较小的步调节。因此,液体运动设备10可用作以步进方式增加/减小光量的光圈。
本领域普通技术人员应该理解到根据设计需要和其它因素可以出现多种变型、组合、分组合和改型,它们都在所附权利要求或其等同概念的范围内。

Claims (9)

1.一种液体运动设备,包括:
具有通过相互面对的第一和第二端壁以及连接第一和第二端壁的侧壁封闭的保持腔室的容器;
在保持腔室内填充的极化或传导的第一液体;
在保持腔室内填充并防止与第一液体混合的第二液体;
用于将电场施加在第一液体上的第一和第二电极;以及
用于在第一电极和第二电极之间施加电压的电压施加装置;
其中第一和第二电极沿着虚轴放置,虚轴在与第一和第二端壁相互面对的方向垂直的方向、即垂直于容器的厚度方向的方向上延伸,
将通过电压施加装置施加电压的位置改变到第一和第二电极延伸方向上使得第一液体接触第一和第二端壁两者,并且沿着虚轴运动通过第二液体包围的整个第一液体,以及
第二电极设置在面向保持腔室的第一端壁的内表面以及第二端壁的内表面上,并且包括位于虚轴延伸方向上的多个第二电极主体。
2.如权利要求1所述的液体运动设备,其特征在于,第一端壁的内表面以及第二端壁的内表面上的多个第二电极主体形成有在容器厚度方向上观看相互配合的边缘。
3.如权利要求1所述的液体运动设备,其特征在于,第一电极沿着虚轴线性延伸。
4.如权利要求1所述的液体运动设备,其特征在于,第一电极设置在第二端壁的内表面上,并沿着虚轴线性延伸。
5.如权利要求1所述的液体运动设备,其特征在于,第一电极设置在第二端壁的内表面上,并包括在虚轴延伸方向上隔开的多个第一电极主体,所述多个第一电极主体通过沿所述虚轴延伸的公共配线区段而公共连接。
6.如权利要求1所述的液体运动设备,其特征在于,第一电极在保持腔室内沿着虚轴延伸。
7.如权利要求6所述的液体运动设备,其特征在于,第一电极在保持腔室内放置在垂直于所述容器的所述虚轴的宽度方向上靠近所述第一端壁的一侧的位置上,并且沿着所述虚轴延伸。
8.如权利要求1所述的液体运动设备,其特征在于,相邻第二电极主体设置相关的凹口和突出部,所述凹口或所述突出部在第二电极主体相互靠近的位置上并在垂直于虚轴延伸方向的方向上延伸。
9.如权利要求1所述的液体运动设备,其特征在于,
第二电极主体包括多个电极主体,电极主体在垂直于虚轴延伸方向的宽度方向上具有至少三个区段;以及
在这些区段中在垂直于所述虚轴的所述宽度方向上位于两侧的区段放置在可以与第一液体在所述宽度方向上的两侧接触的位置上。
CN2007100061503A 2006-02-01 2007-01-31 液体运动设备 Expired - Fee Related CN101013844B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006-024568 2006-02-01
JP2006024568 2006-02-01
JP2006024568A JP4872364B2 (ja) 2006-02-01 2006-02-01 液体移動装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201010248624.7A Division CN101944824B (zh) 2006-02-01 2007-01-31 液体运动设备

Publications (2)

Publication Number Publication Date
CN101013844A CN101013844A (zh) 2007-08-08
CN101013844B true CN101013844B (zh) 2010-09-29

Family

ID=38050197

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201010248624.7A Expired - Fee Related CN101944824B (zh) 2006-02-01 2007-01-31 液体运动设备
CN2007100061503A Expired - Fee Related CN101013844B (zh) 2006-02-01 2007-01-31 液体运动设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201010248624.7A Expired - Fee Related CN101944824B (zh) 2006-02-01 2007-01-31 液体运动设备

Country Status (5)

Country Link
US (1) US7935239B2 (zh)
EP (1) EP1816732B1 (zh)
JP (1) JP4872364B2 (zh)
KR (1) KR20070079302A (zh)
CN (2) CN101944824B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018959A1 (de) * 2007-04-21 2008-10-30 Advanced Display Technology Ag Schichtaufbau eines Elektrowetting-Systems
JP2011053547A (ja) * 2009-09-03 2011-03-17 Sony Corp 光量調整装置及び撮像装置
CN102935885B (zh) * 2012-12-03 2015-04-08 赵永圣 超导直线栅极高频移相驱动磁流体推进器
WO2014167858A1 (ja) * 2013-04-12 2014-10-16 パナソニック株式会社 溶媒制御方法およびエレクトロウェッティング用溶媒
JP7085838B2 (ja) 2015-02-26 2022-06-17 シーツーシーエヌティー エルエルシー カーボンナノファイバー製造のための方法及びシステム
US10016759B2 (en) * 2015-04-10 2018-07-10 University Of Macau Cooperative-electrode driving technique for droplet-velocity improvement of digital microfluidic systems
WO2017066295A1 (en) 2015-10-13 2017-04-20 Clarion Energy Llc Methods and systems for carbon nanofiber production
CN109307444B (zh) * 2018-11-16 2024-04-02 上海海事大学 一种免维护多级组合电射流泵
CN111628625B (zh) * 2020-05-12 2021-12-10 中国科学技术大学 一种光控制的电场驱动液态金属液滴的装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2139271Y (zh) * 1992-07-02 1993-07-28 王念庆 一种液晶快门

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2543320B1 (fr) * 1983-03-23 1986-01-31 Thomson Csf Dispositif indicateur a commande electrique de deplacement d'un fluide
JPS59204826A (ja) * 1983-05-10 1984-11-20 Ricoh Co Ltd 光シヤツタ
FR2553907B1 (fr) * 1983-10-21 1985-12-13 Thomson Csf Modulateur optique
FR2769375B1 (fr) * 1997-10-08 2001-01-19 Univ Joseph Fourier Lentille a focale variable
US6565727B1 (en) * 1999-01-25 2003-05-20 Nanolytics, Inc. Actuators for microfluidics without moving parts
US6920000B2 (en) * 2002-09-19 2005-07-19 Hewlett-Packard Development Company, L.P. Filter for a display system
US7329545B2 (en) * 2002-09-24 2008-02-12 Duke University Methods for sampling a liquid flow
JP4149305B2 (ja) * 2003-04-25 2008-09-10 富士フイルム株式会社 光シャッターおよびこれを用いた画像表示装置
JP2004336898A (ja) * 2003-05-08 2004-11-25 Olympus Corp 液体移動手段
KR101194701B1 (ko) * 2004-03-04 2012-10-31 코닌클리케 필립스 일렉트로닉스 엔.브이. 광 빔에 광학수차를 도입하는 광학 부재
GB0407231D0 (en) * 2004-03-30 2004-05-05 Koninkl Philips Electronics Nv Variable lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2139271Y (zh) * 1992-07-02 1993-07-28 王念庆 一种液晶快门

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP平9-311643A 1997.12.02

Also Published As

Publication number Publication date
CN101944824B (zh) 2014-07-16
CN101013844A (zh) 2007-08-08
CN101944824A (zh) 2011-01-12
US7935239B2 (en) 2011-05-03
JP4872364B2 (ja) 2012-02-08
JP2007209112A (ja) 2007-08-16
EP1816732A2 (en) 2007-08-08
EP1816732B1 (en) 2019-10-02
US20070246365A1 (en) 2007-10-25
KR20070079302A (ko) 2007-08-06
EP1816732A3 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
CN101013844B (zh) 液体运动设备
US7548363B2 (en) Bi-stable electrowetting optical element and driving method therefor
US6961167B2 (en) Display device based on frustrated total internal reflection
KR101882018B1 (ko) 전기 습윤 장치
US20120327496A1 (en) Optical element and imaging apparatus
US8922893B2 (en) Optical element, method of forming optical element, optical element array, display device, and electronic apparatus
JP2013171289A (ja) エレクトロウエッティング表示装置及びこれを駆動する方法
KR20130087937A (ko) 초점길이 가변형 마이크로 렌즈와 이를 포함하는 마이크로 렌즈 어레이 및 이를 포함하는 3d 디스플레이와 그 동작 방법
CN102375168A (zh) 液体光学元件阵列和显示装置
CN102466827A (zh) 光学器件和立体显示设备
CN110928075A (zh) 一种显示装置、制作方法、以及显示和摄像方法
CN101750834A (zh) 使用光传感器的电泳显示设备
US20120026568A1 (en) Liquid device and display apparatus
WO2013137632A1 (ko) 편광의 위상지연 특성을 조절할 수 있는 고분자 분산형 액정 필름
TW201445179A (zh) 電濕潤顯示面板
CN107238981B (zh) 2d/3d可切换的显示装置
US20220075204A1 (en) Switchable autostereoscopic display with a capacitive touch location sensor
WO2014204228A1 (ko) 입체영상 표시장치용 2d/3d 스위칭 렌즈
WO2015078040A1 (zh) 三维液晶显示装置
US4716447A (en) Interrupting charge integration in semiconductor imagers exposed to radiant energy
JP2013084713A (ja) 固体撮像素子および製造方法、並びに撮像ユニット
Kimura et al. 38‐2: Magnifying Viewer using Poly‐Si Thin‐Film Phototransistor and Liquid‐Crystal Micro‐Lens Array
JP2004061840A (ja) 電気泳動光量調整素子とその駆動方法およびこれを用いた装置
KR101845367B1 (ko) 전계 구동 표시 장치
CN211979367U (zh) 硅基液晶空间光调制器与波长选择开关

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100929

Termination date: 20220131

CF01 Termination of patent right due to non-payment of annual fee