CN100478075C - 用于操纵流体实体的系统 - Google Patents

用于操纵流体实体的系统 Download PDF

Info

Publication number
CN100478075C
CN100478075C CNB2004800338239A CN200480033823A CN100478075C CN 100478075 C CN100478075 C CN 100478075C CN B2004800338239 A CNB2004800338239 A CN B2004800338239A CN 200480033823 A CN200480033823 A CN 200480033823A CN 100478075 C CN100478075 C CN 100478075C
Authority
CN
China
Prior art keywords
fluid
droplet
counterelectrode
control electrode
handle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2004800338239A
Other languages
English (en)
Other versions
CN1882778A (zh
Inventor
M·M·J·德克尔
T·P·C·杜里茨
S·凯帕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1882778A publication Critical patent/CN1882778A/zh
Application granted granted Critical
Publication of CN100478075C publication Critical patent/CN100478075C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0421Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electrophoretic flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0493Specific techniques used
    • B01L2400/0496Travelling waves, e.g. in combination with electrical or acoustic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14395Electrowetting

Abstract

一种用于操纵特别是流体小滴的流体实体的系统包括几个控制电极,其中向所述控制电极施加一个可调节电压以基于电湿润效应来控制所述小滴的位移。在所述流体实体和其中一个控制电极之间有处于固定电压下的反电极。此外,由于所述反电极和控制电极位于流体小滴的相同侧,所以该流体小滴在其远离反电极和控制电极的一侧可被自由使用。因此,该流体小滴可被采用为一种对象载体,并且可以在流体小滴的可自由使用的一侧上放置一个有效载荷。

Description

用于操纵流体实体的系统
本发明涉及一种用于操纵流体实体(特别是流体小滴)的系统。
这种用于操纵流体小滴的系统可以从美国专利申请US2002/0079219中获知。
用于操纵流体小滴的已知系统涉及一种微流体性芯片(micro-fluidic chip),其具有通过一个或多个微通道进行流体连接的贮液器(reservoir)。提供了充当控制电极的集成电极。每个所述集成电极被定位在其中一个贮液器中,以便与包含在该贮液器中的材料或介质电接触。提供一个电压控制器,所述集成电极连接到该电压控制器。通过向各集成电极施加电压,所述材料或介质的样品被动电地(electrokinetically)驱动通过所述微通道,以便执行生化处理。
本发明的一个目的是提供一种用于操纵流体小滴的系统,其中改进了对流体小滴的操纵的控制和可靠性。
该目的是通过一种根据本发明的用于操纵流体小滴的系统而实现的,该系统包括:
几个控制电极,其中向所述控制电极施加一个可调节电压;
一个具有固定电压的反电极,其被提供在所述流体小滴和其中一个控制电极之间,并且覆盖对应的控制电极的表面的一部分,特别地,该反电极的宽度与所述控制电极的宽度的比值在从10-5到0.9的范围内。
所述流体实体例如具有流体小滴的形式,其包括具有极性和/或导电的第一流体材料。该流体实体在其一侧邻近一个固体壁。该小滴的其余部分由至少第二流体包围,该第二流体可以是液体、气体或者蒸汽,其比起该流体实体的第一流体具有较低的极性和/或电导率。该小滴及其周围的一种或多种流体应当是不能融合的,也就是说它们应当分离成不同的流体实体。所述反电极和控制电极被提供在该流体小滴的面对固体壁的一侧。通常来说,这些电极是该固体壁的一部分。由于该流体小滴与处于固定电压下的反电极电接触,所以该流体小滴被精确地维持在相同的固定电压下。例如,该反电极被保持在固定的地电位,以便将该流体小滴维持在地电位。当邻近该流体小滴的实际位置的一个控制电极被激活时,该流体小滴在电湿润效应的影响下从一个控制电极向另一个控制电极移动。由于该流体小滴被维持在反电极的固定电压下,因此使得导致流体小滴移动的电湿润激活更为有效。应当注意,驱动该流体小滴进行位移的电位差被更为精确地控制。因此避免了下面的情况:该流体小滴不经意地获得任何其中一个控制电极的电位,从而使其与用于操纵流体小滴的系统的其它结构发生无心的、相对较紧密的电接触。
此外,由于所述反电极和控制电极位于流体小滴的相同侧,所以该流体小滴在其远离反电极和控制电极的一侧可被自由使用。因此,该流体小滴可被采用为一种对象载体,并且可以在流体小滴的可自由使用的一侧上放置一个有效载荷。在流体小滴的可自由使用的一侧,可以从流体小滴上卸载该有效载荷。
在所述反电极和对应的控制电极之间提供电绝缘。因此,反电极和任何已激活的控制电极之间的电位差可以被精确地维持。此外,比起与反电极的电绝缘,该流体小滴与控制电极的电绝缘更强,从而使得流体小滴的电位非常接近反电极的电位,并且可以在流体小滴和任何控制电极之间维持一个显著的电位差。当在控制电极上的电绝缘的厚度远大于反电极上的电绝缘的厚度时,该流体小滴将近似地获得反电极的电位。因此,在流体小滴和已激活的控制电极之间的电位差被精确地维持,以便精确地控制由这些电位差驱动的流体小滴的位移。
优选地,所述电绝缘朝向流体小滴具有一个厌水表面,例如在该电绝缘上布置一个流体接触涂层。该流体接触涂层对于流体实体的前进或者后退运动具有低滞后性(low-hysteresis)。当采用一个厌水涂层作为流体接触涂层时获得了良好的结果。举例来说,将该厌水涂层布置为厌水单层,比如氟硅酸盐单层。这种厌水单层的电绝缘允许流体小滴的电位紧密地逼近反电极的电位。因此,流体小滴与所述电绝缘的厌水表面接触,该厌水表面支持流体小滴从一个控制电极到另一个控制电极的不受限制的移动。术语“厌水”在这里表明与所述固体壁、流体小滴的第一流体以及包围第一流体的第二流体(分别用S、F1和F2表示)相关的界面能γαβ满足以下条件:
γ SF 2 - γ SF 1 γ F 1 F 2 ≤ 1
应当注意,该流体小滴与该厌水表面成一个超过45度的内部平衡接触角;当该接触角在从70度到110度的范围内时获得了非常好的结果。
优选地,所述反电极具有厌水表面,例如在反电极的背离控制电极的一侧上布置厌水涂层。相应地,减小了反电极和流体小滴之间的粘性,或者换句话说,流体小滴和反电极之间的接触角相对较大,例如在从70度到110度的范围内。当反电极具有厌水表面时,避免了流体小滴粘在反电极上的情况,从而使流体小滴的位移更容易。当采用具有厌水表面的反电极时,发现所述电绝缘不必具有厌水表面。
在所有情况下,重要的是液体小滴的前进接触角与其后退接触角之间的差允许一个足够的电湿润效应,以便在保持流体实体位置和令其位移二者之间进行切换。这个角度差(称为接触角滞后)可以放置流体小滴在电湿润效应下移动,这是通过使得流体小滴在发生了第一次接触之后更为粘着在表面上。在实践中,当前进接触角和后退接触角之间的角度差(或者滞后)不超过20度时获得了流体实体的控制良好的位移。
当所述控制电极以二维图案安排时,分别在反电极和/或电绝缘上布置厌水表面或厌水涂层的措施是特别有利的,从而使流体小滴的基本不受限制的二维位移成为可能。
下面将参照实施例来进一步详述本发明的这些和其它方面。
下面将参照下述实施例并且参考附图来阐明本发明的这些和其它方面,其中:
图1示出了用于操纵流体小滴的系统的一个实施例的示意截面图;
图2示出了图1的用于操纵流体小滴的系统的该实施例的示意顶视图;
图3示出了用于操纵流体小滴的系统的一个实施例的示意截面图;以及
图4示出了用于操纵流体小滴的系统的一个替换实施例的示意截面图。
图1示出了用于操纵流体小滴的系统的一个实施例的示意截面图。特别地,图1示出了沿图2和3中所示的平面A-A的截面,该平面横穿基板40的表面。在基板40上布置有控制电极33、34。此外还示出了反电极31。在反电极31和控制电极33、34之间提供电绝缘体32,其被形成为一个电绝缘层,例如含氮聚对二甲苯(parylene-N)。在该电绝缘层之上、并且优选地也在反电极之上布置一个厌水涂层41,例如无定形氟聚合物AF-1600,其由Dupont提供。作为一个替换方案,该电绝缘层由诸如AF-1600的厌水绝缘体形成。所述反电极可以涂敷有单层厌水材料,例如氟化硅。
一个电控制系统电连接到所述控制电极。该电控制系统包括一个电压源36和一组开关35。所述开关以受控方式操作,以便连续激活邻近的控制电极。可以采用任何开关机制;非常适用的开关例如是薄膜晶体管或者光耦合器。在图1中,示出了激活控制电极33的情形。当前位于控制电极34处的流体小滴37将在电湿润效应的影响下移位到邻近控制电极33,如虚线所示。在实践中,发生位移的小滴38在其前进侧(图的右边)的接触角小于在其后退侧(图的左边)的接触角。这个电压影响载送流体小滴和基板表面之间的相互作用。应当注意,流体小滴和基板40上层叠的各层的接触角的余弦近似地随着该层叠(stack)相对于流体的电位的模数的平方而减小。也就是说,当施加一个电压时,在电极区域中使得该层叠实际上更为亲水。这一现象常被称为“电湿润”,并且在H.J.J.Verheijen和M.W.J.Prins的文章“Reversible electrowetting and trapping of charge:Model andExperiments”(Langmuir 19(1999)6616-6620的)作了更详细的讨论。
图2示出了图1的用于操纵流体小滴的系统的该实施例的示意顶视图。应当注意,图2示出反电极31比控制电极33、34更窄。特别地,反电极的宽度与控制电极的宽度的比值可以在从10-5到0.9的范围内;特别在从10-3到0.2的较窄范围内得到了良好的结果。同样重要的是,反电极典型地不宽于所谓的毛细管长度(capillary length)lc的一半,其中 I c = γ LV ρg , γLV是液体的表面张力,ρ是流体密度,而g是重力加速度。在该流体由一个包围流体所包围的情形中,该毛细管长度与重力加速度无关。这保证了由反电极的湿润造成的流体小滴扰动受到良好的控制。所述控制电极具有彼此相向的锯齿形边界。由于反电极比控制电极窄得多,因此控制电极的电场实际上影响流体小滴与电极层叠的粘性。反电极31比起控制电极与流体小滴具有好得多的电接触,从而使得流体小滴37的电位保持与反电极的电位相等。
图3示出了用于操纵流体小滴的系统的一个实施例的示意截面图。特别地,图3示出了沿着平面B-B的截面,该平面横穿基板40的表面。从图3可以明显看出,反电极31比控制电极33、34更窄,并且流体小滴在控制电极上延伸。在电绝缘层32上施加厌水涂层41。作为一个替换方案,该电绝缘层可以由厌水材料形成,以便将电绝缘层32和厌水层41形成为单个厌水电绝缘层。
图4示出了用于操纵流体小滴的系统的一个替换实施例的示意截面图。在图4所示的实施例中,厌水涂层41既覆盖电绝缘层32也覆盖反电极31。在反电极上的厌水涂层41比起在电绝缘层32上的厌水涂层要薄得多。该厌水涂层的厚度可以从1至几nm的单层一直到几百nm(例如200-700nm)的涂层。在反电极31上的厌水涂层41的较小厚度获得了流体小滴37和反电极的电容性耦合。当采用厌水涂层41时,该电绝缘层本身不必是厌水的,并且例如由含氮聚对二甲苯制成。此外,如果反电极较薄,则它可以被布置在层41之上,在此之后,由部分地用电极31覆盖的绝缘体32构成的整个表面完全用均匀厚度的厌水层覆盖。这提供了易于构造的优点。反电极例如可以是10nm的薄金属层,其通过利用遮板(shadow mask)进行蒸发而被施加。

Claims (9)

1、一种用于操纵流体实体(37)的系统,包括:
多个拉制电极(33,34),其中向所述多个控制电极施加一个可调节电压,
其特征在于该系统还包括:
一个具有固定电压的反电极(31),其被提供在所述流体实体和其中一个控制电极之间,并且覆盖对应的控制电极的表面的一部分,
在所述反电极和对应的控制电极之间提供的电绝缘。
2、如权利要求1所述的用于操纵流体实体的系统,其中该反电极的宽度与所述多个控制电极的宽度的比值在从10-5到0.9的范围内。
3、如权利要求1所述的用于操纵流体实体的系统,其中所述电绝缘具有面向所述流体实体的厌水表面。
4、如权利要求1所述的用于操纵流体实体的系统,其中所述反电极具有面向所述流体实体的厌水表面。
5、如权利要求4所述的用于操纵流体实体的系统,其中厌水表面是布置在该反电极上的厌水涂层,并且该厌水涂层比所述电绝缘薄。
6、如权利要求1所述的用于操纵流体实体的系统,其中以空间二维图案安排所述多个控制电极。
7、如权利要求1所述的用于操纵流体实体的系统,其中在所述反电极和所述流体实体之间的电阻小于在所述多个控制电极和所述流体实体之间的电阻。
8、如权利要求1所述的用于操纵流体实体的系统,其包括一个电控制系统,以便
通过将一个电压施加到单独的控制电极,来激活该单独的控制电极,以及
通过将单独的去激活的控制电极电连接到地电位,来去激活该单独的去激活的控制电极。
9、如权利要求1所述的用于操纵流体实体的系统,其中所述流体实体被一种或多种流体所包围,所述一种或多种流体彼此之间不能融合,并且也不能与所述流体实体的流体融合。
CNB2004800338239A 2003-11-17 2004-11-09 用于操纵流体实体的系统 Active CN100478075C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03104229.4 2003-11-17
EP03104229 2003-11-17

Publications (2)

Publication Number Publication Date
CN1882778A CN1882778A (zh) 2006-12-20
CN100478075C true CN100478075C (zh) 2009-04-15

Family

ID=34585907

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800338239A Active CN100478075C (zh) 2003-11-17 2004-11-09 用于操纵流体实体的系统

Country Status (7)

Country Link
US (1) US7328979B2 (zh)
EP (1) EP1687531B1 (zh)
JP (1) JP4773360B2 (zh)
CN (1) CN100478075C (zh)
AT (1) ATE434131T1 (zh)
DE (1) DE602004021624D1 (zh)
WO (1) WO2005047696A1 (zh)

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122672A2 (en) * 2004-06-16 2005-12-29 The University Of British Columbia Microfluidic transport by electrostatic deformation of fluidic interfaces
JP4539213B2 (ja) * 2004-07-27 2010-09-08 ブラザー工業株式会社 液体移送装置
EP1859330B1 (en) 2005-01-28 2012-07-04 Duke University Apparatuses and methods for manipulating droplets on a printed circuit board
CN101208259B (zh) * 2005-04-25 2011-07-06 新加坡科技研究局 用于在微通道中使用疏水性控制部件来泵送连续液柱的系统和方法
CA2606750C (en) 2005-05-11 2015-11-24 Nanolytics, Inc. Method and device for conducting biochemical or chemical reactions at multiple temperatures
FR2887705B1 (fr) * 2005-06-27 2007-08-10 Commissariat Energie Atomique Dispositif de pompage ou de centrifugation des gouttes deplacees par electromouillage
KR100781739B1 (ko) * 2005-09-28 2007-12-03 삼성전자주식회사 전기습윤에서 액적의 접촉각 변위 및 변화속도 증가방법 및상기 방법에 의해 형성된 액적을 적용한 액적제어장치
US20140193807A1 (en) 2006-04-18 2014-07-10 Advanced Liquid Logic, Inc. Bead manipulation techniques
US9476856B2 (en) 2006-04-13 2016-10-25 Advanced Liquid Logic, Inc. Droplet-based affinity assays
US8980198B2 (en) 2006-04-18 2015-03-17 Advanced Liquid Logic, Inc. Filler fluids for droplet operations
US7901947B2 (en) 2006-04-18 2011-03-08 Advanced Liquid Logic, Inc. Droplet-based particle sorting
US10078078B2 (en) 2006-04-18 2018-09-18 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US8716015B2 (en) 2006-04-18 2014-05-06 Advanced Liquid Logic, Inc. Manipulation of cells on a droplet actuator
US7439014B2 (en) 2006-04-18 2008-10-21 Advanced Liquid Logic, Inc. Droplet-based surface modification and washing
US8637324B2 (en) 2006-04-18 2014-01-28 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
WO2007123908A2 (en) 2006-04-18 2007-11-01 Advanced Liquid Logic, Inc. Droplet-based multiwell operations
US8658111B2 (en) 2006-04-18 2014-02-25 Advanced Liquid Logic, Inc. Droplet actuators, modified fluids and methods
US8809068B2 (en) 2006-04-18 2014-08-19 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
US8389297B2 (en) 2006-04-18 2013-03-05 Duke University Droplet-based affinity assay device and system
WO2009111769A2 (en) 2008-03-07 2009-09-11 Advanced Liquid Logic, Inc. Reagent and sample preparation and loading on a fluidic device
US8172159B2 (en) * 2006-11-07 2012-05-08 Wch Technologies, Inc. Surface to move a fluid via fringe electric fields
US20100024908A1 (en) * 2006-11-27 2010-02-04 Takashi Yasuda Microvolume liquid dispensing device
FR2909293B1 (fr) * 2006-12-05 2011-04-22 Commissariat Energie Atomique Micro-dispositif de traitement d'echantillons liquides
US8685344B2 (en) * 2007-01-22 2014-04-01 Advanced Liquid Logic, Inc. Surface assisted fluid loading and droplet dispensing
CN101627308B (zh) 2007-02-09 2013-08-14 先进流体逻辑公司 微滴操作机构和运用磁性小珠的方法
WO2008101194A2 (en) 2007-02-15 2008-08-21 Advanced Liquid Logic, Inc. Capacitance detection in a droplet actuator
EP2837692A1 (en) 2007-03-22 2015-02-18 Advanced Liquid Logic, Inc. Enzymatic assays for a droplet actuator
AU2008237017B2 (en) * 2007-04-10 2013-10-24 Advanced Liquid Logic, Inc. Droplet dispensing device and methods
WO2009002920A1 (en) 2007-06-22 2008-12-31 Advanced Liquid Logic, Inc. Droplet-based nucleic acid amplification in a temperature gradient
US8591830B2 (en) * 2007-08-24 2013-11-26 Advanced Liquid Logic, Inc. Bead manipulations on a droplet actuator
WO2009032863A2 (en) * 2007-09-04 2009-03-12 Advanced Liquid Logic, Inc. Droplet actuator with improved top substrate
US8460528B2 (en) * 2007-10-17 2013-06-11 Advanced Liquid Logic Inc. Reagent storage and reconstitution for a droplet actuator
US20100236928A1 (en) * 2007-10-17 2010-09-23 Advanced Liquid Logic, Inc. Multiplexed Detection Schemes for a Droplet Actuator
US20100236929A1 (en) * 2007-10-18 2010-09-23 Advanced Liquid Logic, Inc. Droplet Actuators, Systems and Methods
WO2009076414A2 (en) * 2007-12-10 2009-06-18 Advanced Liquid Logic, Inc. Droplet actuator configurations and methods
JP5462183B2 (ja) 2007-12-23 2014-04-02 アドヴァンスト リキッド ロジック インコーポレイテッド 液滴動作を導く液滴アクチュエータ構成及び方法
US8367370B2 (en) * 2008-02-11 2013-02-05 Wheeler Aaron R Droplet-based cell culture and cell assays using digital microfluidics
US8852952B2 (en) 2008-05-03 2014-10-07 Advanced Liquid Logic, Inc. Method of loading a droplet actuator
US20110097763A1 (en) * 2008-05-13 2011-04-28 Advanced Liquid Logic, Inc. Thermal Cycling Method
EP2286228B1 (en) * 2008-05-16 2019-04-03 Advanced Liquid Logic, Inc. Droplet actuator devices and methods for manipulating beads
US8187864B2 (en) 2008-10-01 2012-05-29 The Governing Council Of The University Of Toronto Exchangeable sheets pre-loaded with reagent depots for digital microfluidics
US8053239B2 (en) 2008-10-08 2011-11-08 The Governing Council Of The University Of Toronto Digital microfluidic method for protein extraction by precipitation from heterogeneous mixtures
US9039973B2 (en) 2008-10-10 2015-05-26 The Governing Council Of The University Of Toronto Hybrid digital and channel microfluidic devices and methods of use thereof
US8877512B2 (en) 2009-01-23 2014-11-04 Advanced Liquid Logic, Inc. Bubble formation techniques using physical or chemical features to retain a gas bubble within a droplet actuator
US9851365B2 (en) 2009-02-26 2017-12-26 The Governing Council Of The University Of Toronto Digital microfluidic liquid-liquid extraction device and method of use thereof
US8202736B2 (en) * 2009-02-26 2012-06-19 The Governing Council Of The University Of Toronto Method of hormone extraction using digital microfluidics
US8926065B2 (en) 2009-08-14 2015-01-06 Advanced Liquid Logic, Inc. Droplet actuator devices and methods
US8846414B2 (en) 2009-09-29 2014-09-30 Advanced Liquid Logic, Inc. Detection of cardiac markers on a droplet actuator
WO2011057197A2 (en) 2009-11-06 2011-05-12 Advanced Liquid Logic, Inc. Integrated droplet actuator for gel electrophoresis and molecular analysis
EP2516669B1 (en) 2009-12-21 2016-10-12 Advanced Liquid Logic, Inc. Enzyme assays on a droplet actuator
EP2539450B1 (en) 2010-02-25 2016-02-17 Advanced Liquid Logic, Inc. Method of making nucleic acid libraries
WO2011126892A2 (en) 2010-03-30 2011-10-13 Advanced Liquid Logic, Inc. Droplet operations platform
US20190300945A1 (en) 2010-04-05 2019-10-03 Prognosys Biosciences, Inc. Spatially Encoded Biological Assays
US10787701B2 (en) 2010-04-05 2020-09-29 Prognosys Biosciences, Inc. Spatially encoded biological assays
JP5893607B2 (ja) 2010-04-05 2016-03-23 プログノシス バイオサイエンシズ インコーポレイテッドPrognosys Biosciences,Inc. 空間コード化生物学的アッセイ
US10232374B2 (en) 2010-05-05 2019-03-19 Miroculus Inc. Method of processing dried samples using digital microfluidic device
US9011662B2 (en) 2010-06-30 2015-04-21 Advanced Liquid Logic, Inc. Droplet actuator assemblies and methods of making same
US9476811B2 (en) 2010-10-01 2016-10-25 The Governing Council Of The University Of Toronto Digital microfluidic devices and methods incorporating a solid phase
EP2641097A4 (en) 2010-11-17 2016-09-07 CAPACITY RECOGNITION IN A DROPPER ACTUATOR
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
EP2705374A4 (en) 2011-05-02 2014-11-12 Advanced Liquid Logic Inc MOLECULAR DIAGNOSTIC PLATFORM
WO2012154745A2 (en) 2011-05-09 2012-11-15 Advanced Liquid Logic, Inc. Microfluidic feedback using impedance detection
EP2707724A4 (en) 2011-05-10 2015-01-21 Advanced Liquid Logic Inc ENZYME CONCENTRATION AND ASSAYS FOR THIS
AU2012279420A1 (en) 2011-07-06 2014-01-30 Advanced Liquid Logic Inc Reagent storage on a droplet actuator
US8901043B2 (en) 2011-07-06 2014-12-02 Advanced Liquid Logic, Inc. Systems for and methods of hybrid pyrosequencing
WO2013009927A2 (en) 2011-07-11 2013-01-17 Advanced Liquid Logic, Inc. Droplet actuators and techniques for droplet-based assays
WO2013016413A2 (en) 2011-07-25 2013-01-31 Advanced Liquid Logic Inc Droplet actuator apparatus and system
EP2776165A2 (en) 2011-11-07 2014-09-17 Illumina, Inc. Integrated sequencing apparatuses and methods of use
WO2013078216A1 (en) 2011-11-21 2013-05-30 Advanced Liquid Logic Inc Glucose-6-phosphate dehydrogenase assays
US9223317B2 (en) 2012-06-14 2015-12-29 Advanced Liquid Logic, Inc. Droplet actuators that include molecular barrier coatings
CA2877950C (en) 2012-06-27 2021-06-22 Advanced Liquid Logic Inc. Techniques and droplet actuator designs for reducing bubble formation
WO2014062551A1 (en) 2012-10-15 2014-04-24 Advanced Liquid Logic, Inc. Digital microfluidics cartridge and system for operating a flow cell
WO2014210225A1 (en) 2013-06-25 2014-12-31 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
US10124351B2 (en) 2013-08-13 2018-11-13 Advanced Liquid Logic, Inc. Methods of improving accuracy and precision of droplet metering using an on-actuator reservoir as the fluid input
CN105916689A (zh) 2013-08-30 2016-08-31 Illumina公司 在亲水性或斑驳亲水性表面上的微滴操纵
EP3680333A1 (en) 2014-04-29 2020-07-15 Illumina, Inc. Multiplexed single cell expression analysis using template switch and tagmentation
KR102241309B1 (ko) * 2014-08-12 2021-04-16 광주과학기술원 전기습윤 구동 방식의 광자극기
CA2960721C (en) 2014-10-09 2023-09-05 Illumina, Inc. Method and device for separating immiscible liquids to effectively isolate at least one of the liquids
WO2016061684A1 (en) * 2014-10-21 2016-04-28 The Governing Council Of The University Of Toronto Digital microfluidic devices with integrated electrochemical sensors
US9815056B2 (en) 2014-12-05 2017-11-14 The Regents Of The University Of California Single sided light-actuated microfluidic device with integrated mesh ground
US11634707B2 (en) 2015-02-10 2023-04-25 Illumina, Inc. Methods and compositions for analyzing cellular components
WO2016154038A1 (en) 2015-03-20 2016-09-29 Illumina, Inc. Fluidics cartridge for use in the vertical or substantially vertical position
US10774374B2 (en) 2015-04-10 2020-09-15 Spatial Transcriptomics AB and Illumina, Inc. Spatially distinguished, multiplex nucleic acid analysis of biological specimens
SG11201708429WA (en) 2015-04-22 2017-11-29 Berkeley Lights Inc Microfluidic cell culture
DK3294911T3 (da) 2015-05-11 2020-11-16 Illumina Inc Platform til opdagelse og analyse af terapeutiske midler
CN108026494A (zh) 2015-06-05 2018-05-11 米罗库鲁斯公司 限制蒸发和表面结垢的空气基质数字微流控装置和方法
WO2016197106A1 (en) 2015-06-05 2016-12-08 Miroculus Inc. Evaporation management in digital microfluidic devices
GB2556713B (en) 2015-07-06 2021-06-23 Illumina Inc Balanced AC modulation for driving droplet operations electrodes
EP3854884A1 (en) 2015-08-14 2021-07-28 Illumina, Inc. Systems and methods using magnetically-responsive sensors for determining a genetic characteristic
CA3172078A1 (en) 2015-08-28 2017-03-09 Illumina, Inc. Nucleic acid sequence analysis from single cells
US10906044B2 (en) 2015-09-02 2021-02-02 Illumina Cambridge Limited Methods of improving droplet operations in fluidic systems with a filler fluid including a surface regenerative silane
US10450598B2 (en) 2015-09-11 2019-10-22 Illumina, Inc. Systems and methods for obtaining a droplet having a designated concentration of a substance-of-interest
JP6936222B2 (ja) 2015-10-22 2021-09-15 イラミーナ インコーポレーテッド 流体装置のための充填剤流体
US10799865B2 (en) 2015-10-27 2020-10-13 Berkeley Lights, Inc. Microfluidic apparatus having an optimized electrowetting surface and related systems and methods
SG10202107069UA (en) * 2015-10-27 2021-07-29 Berkeley Lights Inc Microfluidic electrowetting device apparatus having a covalently bound hydrophobic surface
CN108602066B (zh) 2015-12-01 2021-08-17 亿明达股份有限公司 液体存储输送机构以及方法
WO2017095917A1 (en) 2015-12-01 2017-06-08 Illumina, Inc. Digital microfluidic system for single-cell isolation and characterization of analytes
ES2786974T3 (es) 2016-04-07 2020-10-14 Illumina Inc Métodos y sistemas para la construcción de bibliotecas de ácidos nucleicos normalizadas
CA3022623A1 (en) 2016-05-26 2017-11-30 Berkeley Lights, Inc. Covalently modified surfaces, kits, and methods of preparation and use
JP2020501107A (ja) 2016-08-22 2020-01-16 ミロキュラス インコーポレイテッド デジタルマイクロ流体デバイスにおける並行小滴制御のためのフィードバックシステム
WO2018126082A1 (en) 2016-12-28 2018-07-05 Miroculis Inc. Digital microfluidic devices and methods
US11623219B2 (en) 2017-04-04 2023-04-11 Miroculus Inc. Digital microfluidics apparatuses and methods for manipulating and processing encapsulated droplets
CN110892258A (zh) 2017-07-24 2020-03-17 米罗库鲁斯公司 具有集成的血浆收集设备的数字微流控系统和方法
CN115582155A (zh) 2017-09-01 2023-01-10 米罗库鲁斯公司 数字微流控设备及其使用方法
CN112041459A (zh) 2018-01-29 2020-12-04 圣祖德儿童研究医院 核酸扩增方法
CA3133124A1 (en) 2019-04-08 2020-10-15 Miroculus Inc. Multi-cartridge digital microfluidics apparatuses and methods of use
US11524298B2 (en) 2019-07-25 2022-12-13 Miroculus Inc. Digital microfluidics devices and methods of use thereof
WO2021102134A1 (en) 2019-11-20 2021-05-27 E Ink Corporation Spatially variable hydrophobic layers for digital microfluidics
US11554374B2 (en) 2020-01-17 2023-01-17 Nuclera Nucleics Ltd. Spatially variable dielectric layers for digital microfluidics
US11946901B2 (en) 2020-01-27 2024-04-02 Nuclera Ltd Method for degassing liquid droplets by electrical actuation at higher temperatures
TWI767566B (zh) 2020-02-18 2022-06-11 英商核酸有限公司 主動矩陣介電濕潤系統及其驅動方法
WO2021168162A1 (en) 2020-02-19 2021-08-26 Nuclera Nucleics Ltd. Latched transistor driving for high frequency ac driving of ewod arrays
CN115461152A (zh) 2020-04-27 2022-12-09 核酸有限公司 用于数字微流体的可变驱动和短路保护的分段顶板
EP4153775A1 (en) 2020-05-22 2023-03-29 10X Genomics, Inc. Simultaneous spatio-temporal measurement of gene expression and cellular activity
US20230304066A1 (en) 2020-09-04 2023-09-28 Baebies, Inc. Microfluidic based assay for unbound bilirubin
CN116635152A (zh) 2020-10-08 2023-08-22 核蛋白有限公司 用于微流体系统中试剂特异性驱动ewod阵列的电润湿系统和方法
KR20230113559A (ko) 2020-11-04 2023-07-31 뉴클레라 리미티드 디지털 미세유체 디바이스들을 위한 유전층들
US11857961B2 (en) 2022-01-12 2024-01-02 Miroculus Inc. Sequencing by synthesis using mechanical compression

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0267782A3 (en) * 1986-11-10 1989-09-27 Kabushiki Kaisha Toshiba Ink jet system
US6315953B1 (en) * 1993-11-01 2001-11-13 Nanogen, Inc. Devices for molecular biological analysis and diagnostics including waveguides
JP3791999B2 (ja) * 1997-03-24 2006-06-28 株式会社アドバンス 液体微粒子ハンドリング装置
FI980874A (fi) * 1998-04-20 1999-10-21 Wallac Oy Menetelmä ja laite pienten nestemäärien kemiallisen analyysin suorittamiseksi
US6565727B1 (en) * 1999-01-25 2003-05-20 Nanolytics, Inc. Actuators for microfluidics without moving parts
US6939451B2 (en) 2000-09-19 2005-09-06 Aclara Biosciences, Inc. Microfluidic chip having integrated electrodes
DE10124988A1 (de) * 2001-05-22 2002-12-12 Infineon Technologies Ag Dispensier-Anordnung und Verfahren zum Dispensieren einer zu dispensierenden Lösung unter Verwendung der Dispensier-Anordnung
US6538823B2 (en) * 2001-06-19 2003-03-25 Lucent Technologies Inc. Tunable liquid microlens
CA2472649A1 (en) * 2002-01-08 2003-07-17 Japan Science And Technology Agency Pcr and hybridization methods utilizing electrostatic transportation and devices therefor
US6887362B2 (en) * 2002-02-06 2005-05-03 Nanogen, Inc. Dielectrophoretic separation and immunoassay methods on active electronic matrix devices
JP4031322B2 (ja) * 2002-08-26 2008-01-09 独立行政法人科学技術振興機構 液滴操作装置
JP4438044B2 (ja) * 2002-10-15 2010-03-24 キヤノン株式会社 電気泳動表示用粒子分散液およびそれを用いた電気泳動表示装置

Also Published As

Publication number Publication date
US7328979B2 (en) 2008-02-12
CN1882778A (zh) 2006-12-20
EP1687531B1 (en) 2009-06-17
WO2005047696A1 (en) 2005-05-26
JP4773360B2 (ja) 2011-09-14
DE602004021624D1 (de) 2009-07-30
EP1687531A1 (en) 2006-08-09
JP2007512121A (ja) 2007-05-17
US20070139486A1 (en) 2007-06-21
ATE434131T1 (de) 2009-07-15

Similar Documents

Publication Publication Date Title
CN100478075C (zh) 用于操纵流体实体的系统
Pollack et al. Electrowetting-based actuation of liquid droplets for microfluidic applications
JP5437575B2 (ja) 液滴を移動させて処理するためのデバイス
KR102433301B1 (ko) 나노포어 디바이스 및 이를 제조하는 방법
US8518829B2 (en) Self-sealed fluidic channels for nanopore array
JP4792338B2 (ja) 液体搬送装置
Armani et al. Using feedback control of microflows to independently steer multiple particles
CN109308880B (zh) 具有输入上液滴预充电的微流体器件
US20100000620A1 (en) Microfluidic liquid-movement device
US20100181195A1 (en) Microfluidic chip for and a method of handling fluidic droplets
JP2004022165A (ja) 静電力によってマイクロカテナリーラインに沿って少量液体を移動させるためのデバイス
Raccurt et al. On the influence of surfactants in electrowetting systems
JP4713306B2 (ja) 液体搬送装置
US8252159B2 (en) Microfluidic device for controlled movement of liquid
Chang et al. Twin-plate electrowetting for efficient digital microfluidics
JP2005140333A (ja) 静電封止デバイス及びその使用方法
Choi et al. Droplet transportation using a pre-charging method for digital microfluidics
US20120248229A1 (en) Marangoni stress-driven droplet manipulation on smart polymers for ultra-low voltage digital microfluidics
JP4385124B2 (ja) 電気的制御可能な微量液滴輸送デバイス
US11278899B2 (en) Microfluidic particle and manufacturing method thereof, microfluidic system, manufacturing method and control method thereof
CN105329836B (zh) 微流体通道、侧向层流检测器件和微流体阀
Samad et al. Design and analysis of a low actuation voltage electrowetting-on-dielectric device
US9202500B2 (en) Devices having electrodes on the trailing edge surface
US9206794B2 (en) Microfluidic pump with metal electrode having variable oxidation state
US20210331167A1 (en) Micro-channel structure, sensor, micro-fluidic device, lab-on-chip device, and method of fabricating micro-channel structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant