CA2862640A1 - Multiple energization elements in stacked integrated component devices - Google Patents

Multiple energization elements in stacked integrated component devices Download PDF

Info

Publication number
CA2862640A1
CA2862640A1 CA2862640A CA2862640A CA2862640A1 CA 2862640 A1 CA2862640 A1 CA 2862640A1 CA 2862640 A CA2862640 A CA 2862640A CA 2862640 A CA2862640 A CA 2862640A CA 2862640 A1 CA2862640 A1 CA 2862640A1
Authority
CA
Canada
Prior art keywords
energization
electrical
integrated component
component device
stacked integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2862640A
Other languages
French (fr)
Inventor
Randall B. Pugh
Frederick A. Flitsch
Daniel B. Otts
James Daniel Riall
Adam Toner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Vision Care Inc
Original Assignee
Johnson and Johnson Vision Care Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson Vision Care Inc filed Critical Johnson and Johnson Vision Care Inc
Publication of CA2862640A1 publication Critical patent/CA2862640A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/10Electronic devices other than hearing aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00807Producing lenses combined with electronics, e.g. chips
    • B29D11/00817Producing electro-active lenses or lenses with energy receptors, e.g. batteries or antennas
    • B29D11/00826Producing electro-active lenses or lenses with energy receptors, e.g. batteries or antennas with energy receptors for wireless energy transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • G02C7/083Electrooptic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/16Laminated or compound lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06506Wire or wire-like electrical connections between devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06562Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06572Auxiliary carrier between devices, the carrier having an electrical connection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/107Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

This invention provides a stacked integrated component device with multiple energization elements comprising: a first layer comprising a first surface, and a second layer comprising a second surface, wherein at least a portion of the first surface lays above at least a portion of the second surface; at least one electrical connection between an electrical contact on the first surface and an electrical contact on the second surface; at least one electrical transistor, wherein the electrical transistor(s) are comprised in the stacked integrated component device; at least a first and a second discrete energization elements, wherein the discrete energization elements are comprised in either or both of the first and second layers; and self-test circuitry comprising a sensing element configured to detect current flowing through the energization elements, the self-test circuitry being configured to determine if one of the energization elements is causing an excessive current draw condition.

Description

MULTIPLE ENERGIZATION ELEMENTS IN STACKED INTEGRATED
COMPONENT DEVICES
FIELD OF USE
This invention relates to a stacked integrated component device with multiple energization elements.
BACKGROUND
Traditionally an ophthalmic device, such as a contact lens, an intraocular lens or a punctal plug included a biocompatible device with a corrective, cosmetic or therapeutic quality. A contact lens, for example, may provide one or more of:
vision correcting functionality; cosmetic enhancement; and therapeutic effects. Each function is provided by a physical characteristic of the lens. A design incorporating a refractive quality into a lens may provide a vision corrective function. A pigment incorporated into the lens may provide a cosmetic enhancement. An active agent incorporated into a lens may provide a therapeutic functionality. Such physical characteristics are accomplished without the lens entering into an energized state. A punctal plug has traditionally been a passive device.
More recently, it has been theorized that active components may be incorporated into a contact lens. Some components may include semiconductor devices. Some examples have shown semiconductor devices embedded in a contact lens placed upon animal eyes. It has also been described how the active components may be energized and activated in numerous manners within the lens structure itself.
The topology and size of the space defined by the lens structure creates a novel and challenging environment for the definition of various functionality.
Generally, such disclosures have included discrete devices. However, the size and power requirements for available discrete devices are not necessarily conducive for inclusion in a device to be worn on a human eye. Technological embodiments that address such an ophthalmological background need generate solutions that not only address ophthalmic requirements but also encompass novel embodiments for the more general technology space of powered electrical devices.

SUMMARY
Accordingly, the present invention provides a stacked integrated component device with multiple energization elements comprising: a first layer comprising a first surface, and a second layer comprising a second surface, wherein at least a portion of the first surface lays above at least a portion of the second surface; at least one electrical connection between an electrical contact on the first surface and an electrical contact on the second surface; at least one electrical transistor, wherein the electrical transistor(s) are comprised in the stacked integrated component device; at least a first and a second discrete energization elements, wherein the discrete energization elements are comprised in either or both of the first and second layers; and self-test circuitry comprising a sensing element configured to detect current flowing through the energization elements, the self-test circuitry being configured to determine if one of the energization elements is causing an excessive current draw condition.
The self-test circuitry may be configured to compare a voltage drop through a resistive element with a reference voltage.
The self-test circuitry may be configured to isolate the cause of the excessive current draw condition by cyclically isolating one at a time each of a plurality of banks of energization elements by disconnecting a ground return line of a said bank, and determining whether or not the current draw decreases.
The self-test circuitry may be configured to perform a further isolation loop if the current draw returns to a normal specification when a said baffl( has been isolated, wherein the self-test circuitry is configured to disconnect a bias of each energization element in the said baffl( and to sense the current draw after each energization element has been isolated.
The self-test circuitry may be configured to disable the entire said bank from a power supply system if the further isolation loop proceeds through all the energization elements in the said bank without the current draw returning to an acceptable value.
The self-test circuitry may be configured to disconnect a said energization element from the power supply system if the isolation of the said energization element returns the current draw to a normal state.
There is also provided a stacked integrated component device with multiple energization elements comprising: a first layer comprising a first surface, and a second layer comprising a second surface, wherein at least a portion of the first surface lays above at least a portion of the second surface; at least one electrical connection between an electrical contact on the first surface and an electrical contact on the second surface; at least one electrical transistor, wherein the electrical transistor(s) are comprised in the stacked integrated component device; a plurality of discrete energization elements, wherein the discrete energization elements are comprised in either or both of the first and second layers; switching elements configured to combine the energization elements to define different power supply conditions; and a microcontroller configured to control the power supply conditions that the multiple energization elements are connected to define.
The stacked integrated component device may further comprise a switch controller configured to index control signal level changes from the microcontroller into state changes to the switching elements.
The discrete energization elements have a thicknesses less than 200 microns.
The stacked integrated component device may additionally comprise a first electrical common connection, wherein the first electrical common connection is in contact with the ground connection of the first discrete energization element;
a second electrical common connection in contact with the ground connection of the second discrete energization element; a first electrical bias connection in contact with the bias connection of the first discrete energization element; and a second electrical bias connection in contact with the bias connection of the second discrete energization element.
The first electrical common connection may be electrically connected to the second electrical common connection forming a single common connection for the at least two energization elements.
The first electrical bias connection may be electrically connected to the second electrical bias connection forming a single bias connection for the at least two energization elements.
The first electrical bias connection may be electrically connected to a first power supply input of a first integrated circuit; and the second electrical bias connection may be electrically connected to a second power supply input of a first integrated circuit.

The first integrated circuit may generate a first output power supply; and a second integrated circuit may be electrically connected to said first output power supply.
The first integrated circuit may combine, with at least a first switch, the first power supply input and the second power supply input to create a first output power supply, wherein the first output supply has the equivalent voltage capability of the first energization element and the second energization element; and the first output supply has the combined electrical current capability of the first energization element and the second energization element.
The first integrated circuit may combine, with at least a first switch, the first power supply input and the second electrical common connection to create a first output power supply, wherein the first output supply has the equivalent current capability of the lesser of the electrical current capability of the first energization element and the second energization element; and the first output supply has the combined electrical bias of the first energization element and the second energization element.
All electrical connections from the first and second layers may not be connected to any external wired connection of the stacked integrated component device.
The number of discrete energization elements within the stacked integrated component device may exceed three.
The number of raw power supplies formed as combinations of multiple energization elements may exceed one.
At least a first raw power supply formed as a combination of multiple energization elements may be connected to a capacitive element.
The stacked layers may include one or more layers which include a power source for at least one component included in the stacked layers. An insert may be provided that may be energized and incorporated into an ophthalmic device. The insert may be formed of multiple layers which may have unique functionality for each layer;
or alternatively mixed functionality but in multiple layers. The layers may have layers dedicated to the energization of the product or the activation of the product or for control of functional components within the lens body. In addition, methods and apparatus for forming an ophthalmic lens, with inserts of stacked functionalized layers are presented.
The insert may contain a layer in an energized state which is capable of powering a component capable of drawing a current. Components may include, for example, one or more of: a variable optic lens element, and a semiconductor device, which may either be located in the stacked layer insert or otherwise connected to it.
There may be provided a cast molded silicone hydrogel contact lens with a rigid or formable insert of stacked functionalized layers contained within the ophthalmic lens in a biocompatible fashion, wherein at least one of the functionalized lens includes a power source.
Accordingly, a disclosure is provided of a technological framework for devices formed from multiple stacked layers with energization. Disclosure is made for an ophthalmic lens with a stacked functionalized layer portion, apparatus for forming an ophthalmic lens with a stacked functionalized layer portion and methods for the same.
An insert may be formed from multiple layers in various manners as discussed herein and the insert may be placed in proximity to one, or both of, a first mold part and a second mold part. A reactive monomer mix is placed between the first mold part and the second mold part. The first mold part is positioned proximate to the second mold part thereby forming a lens cavity with the energized substrate insert and at least some of the reactive monomer mix in the lens cavity; the reactive monomer mix is exposed to actinic radiation to form an ophthalmic lens. Lenses may be formed via the control of actinic radiation to which the reactive monomer mixture is exposed.
DESCRIPTION OF THE DRAWINGS
Fig. 1 illustrates a mold assembly apparatus.
Fig. 2 illustrates an exemplary form factor for an insert which can be placed within an ophthalmic lens.
Fig. 3 illustrates a three dimensional representation of an insert formed of stacked functional layers which is incorporated within an ophthalmic lens mold part.
Fig. 4 illustrates a cross sectional representation of an ophthalmic lens mold part with an insert.
Fig. 5 demonstrates an insert comprising multiple stacked functional layers upon a supporting and aligning structure.
Fig. 6 illustrates different shapes of the components used for forming layers in a stacked functional layer insert.
Fig. 7 illustrates a block diagram of a power source layer.
Fig. 8 illustrates a form factor for a wire based power source.
Fig. 9 illustrates the shape of an exemplary wire based power source relative to an exemplary ophthalmic lens component.
Fig. 10 illustrates a cross sectional diagram of the radial film layers of an exemplary wire based power source.
Fig. 11 illustrates an exemplary stacked integrate component device with components from multiple technologies and energization sources.
Fig. 12 illustrates an exemplary circuit diagram for a stacked integrated component device with multiple energization elements.
Fig.13 illustrates an exemplary flexible power supply utilizing multiple energization elements.
Fig. 14 illustrates is a flowchart with exemplary method steps for self-diagnostic procedures for stacked integrated component devices with multiple energization elements.
Fig .15 illustrates an exemplary stacked integrated component device wherein multiple energization elements are in operations for both charging and discharging.
DETAILED DESCRIPTION OF THE INVENTION
A substrate insert device may be formed through the stacking of multiple functionalized layers. Additionally the disclosure relates to methods and apparatus for manufacturing an ophthalmic lens with such a stacked functionalized layer substrate as an insert in the formed lens. In addition, there may be provided an ophthalmic lens with a stacked functionalized layer substrate insert incorporated into the ophthalmic lens.
In the following sections detailed descriptions of one or more embodiments of the invention will be given. The description of both preferred and alternative embodiments are exemplary embodiments only, and it is understood that to those skilled in the art that variations, modifications and alterations may be apparent. It is therefore to be understood that said exemplary embodiments do not limit the scope of the underlying invention.
GLOSSARY
In this description and claims directed to the presented invention, various terms may be used for which the following definitions will apply:
Energized: as used herein refers to the state of being able to supply electrical current to or to have electrical energy stored within.
Energy: as used herein refers to the capacity of a physical system to do work, and may relate to the said capacity being able to perform electrical actions in doing work.
Energy Source: as used herein refers to device or layer which is capable of supplying Energy or placing a logical or electrical device in an Energized state.
Energy Harvesters: as used herein refers to device capable of extracting energy from the environment and convert it to electrical energy.
Functionalized: as used herein refers to making a layer or device able to perform a function including for example, energization, activation, or control.
Lens: refers to any ophthalmic device that resides in or on the eye. These devices may provide optical correction or may be cosmetic. For example, the term lens may refer to a contact lens, intraocular lens, overlay lens, ocular insert, optical insert or other similar device through which vision is corrected or modified, or through which eye physiology is cosmetically enhanced (e.g. iris color) without impeding vision. Lenses may include soft contact lenses are made from silicone elastomers or hydrogels, which include but are not limited to silicone hydrogels, and fluorohydrogels.
Lens forming mixture or "Reactive Mixture" or "RMM" (reactive monomer mixture): as used herein refers to a monomer or prepolymer material which may be cured and crosslinked or crosslinked to form an ophthalmic lens. Lens forming mixtures may have one or more additives such as: UV blockers, tints, photoinitiators or catalysts, and other additives one might desire in an ophthalmic lenses such as, contact or intraocular lenses.
Lens Forming Surface: refers to a surface that is used to mold a lens. Any such surface 103-104 can have an optical quality surface finish, which indicates that it is sufficiently smooth and formed so that a lens surface fashioned by the polymerization of a lens forming material in contact with the molding surface is optically acceptable.
Further, the lens forming surface 103-104 can have a geometry that is necessary to impart to the lens surface the desired optical characteristics, including without limitation, spherical, aspherical and cylinder power, wave front aberration correction, corneal topography correction and the like as well as any combinations thereof Lithium Ion Cell: refers to an electrochemical cell where Lithium ions move through the cell to generate electrical energy. This electrochemical cell, typically called a battery, may be reenergized or recharged in its typical forms.
Substrate insert: as used herein refers to a formable or rigid substrate capable of supporting an Energy Source within an ophthalmic lens. The Substrate may insert also supports one or more components.
Mold: refers to a rigid or semi-rigid object that may be used to form lenses from uncured formulations. Some preferred molds include two mold parts forming a front curve mold part and a back curve mold part.
Optical Zone: as used herein refers to an area of an ophthalmic lens through which a wearer of the ophthalmic lens sees.
Power: as used herein refers to work done or energy transferred per unit of time.
Rechargeable or Re-energizable: as used herein refers to a capability of being restored to a state with higher capacity to do work, and may relate to the capability of being restored with the ability to flow electrical current at a certain rate for a certain, reestablished time period.
Reenergize or Recharge: To restore to a state with higher capacity to do work.

These terms may relate to restoring a device to the capability to flow electrical current at a certain rate for a certain, reestablished time period.
Released from a mold: means that a lens is either completely separated from the mold, or is only loosely attached so that it may be removed with mild agitation or pushed off with a swab.
Stacked: as used herein means to place at least two component layers in proximity to each other such that at least a portion of one surface of one of the layers contacts a first surface of a second layer. A film, whether for adhesion or other functions may reside between the two layers that are in contact with each other through said film.
"Stacked Integrated Component Devices" as used herein and sometimes referred to as "SIC-Devices", refers to the product of packaging technologies that can assemble thin layers of substrates, which may contain electrical and electromechanical devices, into operative integrated devices by means of stacking at least a portion of each layer upon each other. The layers may comprise component devices of various types, materials, shapes, and sizes. Furthermore, the layers may be made of various device production technologies to fit and assume various contours as it may be desired.
Description An energized lens 100 with an embedded Substrate insert 111 may include an Energy Source 109, such as an electrochemical cell or battery as the storage means for the energy and optionally encapsulation, and isolation of the materials comprising the Energy Source from an environment into which an ophthalmic lens is placed.
A Substrate insert may also include a pattern of circuitry, components and Energy Sources 109. The Substrate insert may locate the pattern of circuitry, components and Energy Sources 109 around a periphery of an optic zone through which a wearer of a lens would see. Alternatively, the insert can include a pattern of circuitry, components and Energy Sources 109 which are small enough to not adversely affect the sight of a contact lens wearer and therefore the Substrate insert can locate them within, or exterior to, an optical zone.
In general, a Substrate insert 111 may be embodied within an ophthalmic lens via automation which places an Energy Source a desired location relative to a mold part used to fashion the lens.
Molds Referring now to Fig. 1, a diagram of an exemplary mold 100 for an ophthalmic lens is illustrated with a Substrate insert 111. As used herein, the terms a mold includes a form 100 having a cavity 105 into which a lens forming mixture can be dispensed such that upon reaction or cure of the lens forming mixture, an ophthalmic lens of a desired shape is produced. The molds and mold assemblies are made up of more than one "mold parts" or "mold pieces" 101-102. The mold parts 101-102 can be brought together such that a cavity 105 is formed between the molds parts 101-102 in which a lens can be formed. This combination of mold parts is preferably temporary. Upon formation of the lens, the mold parts 101-102 can again be separated for removal of the lens.
At least one mold part 101-102 has at least a portion of its surface 103-104 in contact with the lens forming mixture such that upon reaction or cure of the lens forming mixture 110 that surface 103-104 provides a desired shape and form to the portion of the lens with which it is in contact. The same is true of at least one other mold part 101-102.
Thus, for example, a mold assembly 100 may be formed from two parts 101-102, a female concave piece (front piece) 102 and a male convex piece (back piece) 101 with a cavity formed between them. The portion of the concave surface 104 which makes contact with lens forming mixture has the curvature of the front curve of an ophthalmic lens to be produced in the mold assembly 100 and is sufficiently smooth and formed such that the surface of an ophthalmic lens formed by polymerization of the lens forming mixture which is in contact with the concave surface 104 is optically acceptable.
The front mold piece 102 can also have an annular flange integral with and surrounding circular circumferential edge 108 and extends from it in a plane normal to the axis and extending from the flange (not shown).
A lens forming surface can include a surface 103-104 with an optical quality surface finish, which indicates that it is sufficiently smooth and formed so that a lens surface fashioned by the polymerization of a lens forming material in contact with the molding surface is optically acceptable. Further, the lens forming surface 103-104 can have a geometry that is necessary to impart to the lens surface the desired optical characteristics, including without limitation, spherical, aspherical and cylinder power, wave front aberration correction, corneal topography correction and the like as well as any combinations thereof At 111, a Substrate insert is illustrated onto which an Energy Source 109 may be placed. The Substrate insert 111 may be any receiving material onto which an Energy Source 109 may be placed, and may also include circuit paths, components and other aspects useful to use of the energy source. The Substrate insert 111 can be a clear coat of a material which be incorporated into a lens when the lens is formed. The clear coat can include for example a pigment as described below, a monomer or other biocompatible material. The insert can include a media comprising an insert, which can be either rigid or formable. A rigid insert may include an optical zone providing an optical property (such as those utilized for vision correction) and a non-optical zone portion. An Energy Source can be placed on one or both of the optic zone and non-optic zone of the insert. The insert can include an annular insert, either rigid or formable or some shape which circumvents an optic zone through which a user sees.
An Energy Source 109 may be placed onto Substrate insert 111 prior to placement of the Substrate insert 111 into a mold portion used to form a lens.
The Substrate insert 111 may also include one or more components which will receive an electrical charge via the Energy Source 109.
A lens with Substrate insert 111 can include a rigid center soft skirt design in which a central rigid optical element is in direct contact with the atmosphere and the corneal surface on respective an anterior and posterior surfaces, wherein the soft skirt of lens material (typically a hydrogel material) is attached to a periphery of the rigid optical element and the rigid optical element also acts as a Substrate insert providing energy and functionality to the resulting ophthalmic lens.
Substrate insert 111 may be a rigid lens insert fully encapsulated within a hydrogel matrix. A Substrate insert 111 which is a rigid lens insert may be manufactured, for example using microinjection molding technology. The insert can include, for example, a poly (4-methylpent-1-ene) copolymer resin with a diameter of between about 6mm to lOmm and a front surface radius of between about 6 mm and lOmm and a rear surface radius of between about 6 mm and 10 mm and a center thickness of between about 0.050mm and 0.5 mm. The insert may have a diameter of about 8.9 mm and a front surface radius of about 7.9 mm and a rear surface radius of about 7.8 mm and a center thickness of about 0.100 mm and an edge profile of about 0.050 radius. One exemplary micro-molding machine can include the Microsystem five-ton system offered by Battenfield Inc.

The Substrate insert can be placed in a mold part 101-102 utilized to form an ophthalmic lens.
Mold part 101-102 material can include, for example: a polyolefin of one or more of: polypropylene, polystyrene, polyethylene, poly (methyl methacrylate), and modified polyolefins. Other molds can include a ceramic or metallic material.
A preferred alicyclic co-polymer contains two different alicyclic polymers and is sold by Zeon Chemicals L.P. under the trade name ZEONOR. There are several different grades of ZEONOR. Various grades may have glass transition temperatures ranging from 105 C to 160 C. A specifically preferred material is ZEONOR
1060R.
Other mold materials that may be combined with one or more additives to form an ophthalmic lens mold include, for example, Zieglar-Natta polypropylene resins (sometimes referred to as znPP). An exemplary Zieglar-Natta polypropylene resin is available under the name PP 9544 MED. PP 9544 MED is a clarified random copolymer for clean molding as per FDA regulation 21 CFR (c) 3.2 made available by Exxonmobil Chemical Company. PP 9544 MED is a random copolymer (znPP) with ethylene group (hereinafter 9544 MED). Other exemplary Zieglar-Natta polypropylene resins include: Atofina Polypropylene 3761 and Atofina Polypropylene 3620WZ.
Still further, the molds may contain polymers such as polypropylene, polyethylene, polystyrene, poly (methyl methacrylate), modified polyolefins containing an alicyclic moiety in the main chain and cyclic polyolefins. This blend can be used on either or both mold halves, where it is preferred that this blend is used on the back curve and the front curve consists of the alicyclic co-polymers.
In some methods of making molds 100, injection molding is utilized according to known techniques. However, molds can be fashioned by other techniques including, for example: lathing, diamond turning, or laser cutting.
Stacked Functionalized Layer Inserts Referring now to Fig. 2, an exemplary design of a Substrate insert 111 which has been formed as a Stacked Functionalized Layer Insert is illustrated. The disclosure includes methods to prepare and form the substrate insert that may be utilized and formed into Ophthalmic Lenses. For clarity of description, but not limiting the scope of the claimed invention, an exemplary Substrate insert 210 is illustrated and described, which comprises a full annular ring with an optical lens area 211. It may be obvious to one skilled in the arts that the inventive art described in this specification has similar application to the various diversity of shapes that have been described generically for Substrate inserts of various kinds.
Referring now to Fig. 3 a three dimensional representation is illustrated of a fully formed ophthalmic lens using a stacked layer substrate insert of the type in item 210 is demonstrated as item 300. The representation shows a partial cut out from the ophthalmic lens to realize the different layers present inside the device.
Item 320 shows the body material in cross section of the encapsulating layers of the substrate insert. This item surrounds the entire periphery of the ophthalmic lens. It may be clear to one skilled in the arts that the actual insert may comprise a full annular ring or other shapes that still may reside within the constraints of the size of a typical ophthalmic lens.
Items 330, 331 and 332 are meant to illustrate three of numerous layers that may be found in a substrate insert formed as a stack of functional layers. A
single layer may include one or more of: active and passive components and portions with structural, electrical or physical properties conducive to a particular purpose.
A layer 330 may include an energization source, such as, for example, one or more of: a battery, a capacitor and a receiver within the layer 330. Item 331 then, in a non-limiting exemplary sense may comprise microcircuitry in a layer that detects actuation signals for the ophthalmic lens. A power regulation layer 332 may be included that is capable of receiving power from external sources, charges the battery layer 330 and controls the use of battery power from layer 330 when the lens is not in a charging environment. The power regulation may also control signals to an exemplary active lens, demonstrated as item 310 in the center annular cutout of the substrate insert.
An energized lens with an embedded Substrate insert may include an Energy Source, such as an electrochemical cell or battery as the storage means for the energy and optionally encapsulation and isolation of the materials comprising the Energy Source from an environment into which an ophthalmic lens is placed.
A Substrate insert may also includes a pattern of circuitry, components and Energy Sources. The Substrate insert may locate the pattern of circuitry, components and Energy Sources around a periphery of an optic zone through which a wearer of a lens would see. Alternatively, the insert may include a pattern of circuitry, components and Energy Sources which are small enough to not adversely affect the sight of a contact lens wearer and therefore the Substrate insert may locate them within, or exterior to, an optical zone.
In general, a Substrate insert 111 may be embodied within an ophthalmic lens via automation which places an Energy Source a desired location relative to a mold part used to fashion the lens.
Fig. 4 illustrates a closer view of a stacked functional layer insert 400 seen in cross section. Within the body of the ophthalmic lens 410 is embedded the functionalized layer insert 420 which may surround and connects to an active lens component 450. It may be clear to one skilled in the arts, that this example shows but one of numerous embedded functions that may be placed within an ophthalmic lens.
Within the stacked layer portion of the insert are demonstrated numerous layers. The layers may comprise multiple semiconductor based layers. For example, item 440, the bottom layer in the stack, may be a thinned silicon layer upon which circuits have been defined for various functions. Another thinned silicon layer may be found in the stack as item 441. In a non-limiting example, such a layer may have the function of energization of the device. These silicon layers may be electrically isolated from each other through an intervening insulator layer show as item 450. The portions of the surface layers of items 440, 450 and 441 that overlap each other may be adhered to each other through the use of a thin film of adhesive. It may be obvious to one skilled in the arts that numerous adhesives may have the desired characteristics to adhere and passivate the thin silicon layers to the insulator, as in an exemplary sense an epoxy might.
A multiple stacked layer may include additional layers 442, which in a non limiting example may include a thinned silicon layer with circuitry capable of activating and controlling an active lens component. As mentioned before, when the stacked layers need to be electrically isolated from each other, stacked insulator layers may be included between the electrically active layer and in this example item may represent this insulator layer comprising part of the stacked layer insert. In some of the examples described herein, reference has been made to layers formed from thin layers of silicon. Material definitions of the thin stacked layers may include, in a non-limiting sense, other semiconductors, metals or composite layers. And the function of the thin layers may include electrical circuitry, but also may include other functions like signal reception, energy handling and storage and energy reception to mention a few examples. In the case that different material types are used, the choice of different adhesives, encapsulants and other materials which interact with the stacked layers may be required. For example, a thin layer of epoxy may adhere three silicon layers shown as 440, 441 and 442 with two silicon oxide layers 450 and 451.
As mentioned in some of the examples the thinned stacked layer may comprise circuits formed into silicon layers. There may be numerous manners to fabricate such layers, however, standard and state of the art semiconductor processing equipment may form electronic circuits on silicon wafers using generic processing steps.
After the circuits are formed into the appropriate locations on the silicon wafers, wafer processing equipment may be used to thin the wafers from hundreds of microns thick to thicknesses of 50 microns or less. After thinning the silicon circuits may be cut or "diced" from the wafer into the appropriate shapes for the ophthalmic lens or other application. In later section, different exemplary shapes of the stacked layer invention disclosed herein are shown in Fig. 6. These will be discussed in detail later;
however, the "dicing" operation may use various technical options to cut out thin layers with curved, circular, annular, rectilinear and other more complicated shapes.
When the stacked layers perform a function relating to electrical current flow, there may be a need to provide electrical contact between the stacked layers.
In the general field of semiconductor packaging this electrical connection between stacked layers has generic solutions comprising wire bonding, solder bumping and wire deposition processes. Wire deposition may use a printing process where electrically conductive iffl(s are printed between two connection pads. Additionally or alternatively, wires may be physically defined by an energy source, like for example a laser, interacting with a gaseous, liquid or solid chemical intermediate resulting in an electrical connection where the energy source irradiates. Still further interconnection types may derive from photolithographic processing before or after metal films are deposited by various means.
If one or more of the layers needs to communicate electrical signals outside itself, it may have a metal contact pad that is not covered with passivating and insulating layers. These pads may be located on the periphery of the layer where subsequent stacked layers do not cover the region. In an example, in Fig. 4 interconnect wires 430 and 431 are demonstrated as electrically connecting peripheral regions of layers 440, 441 and 442. It may be apparent to one skilled in the art that numerous layouts or designs of where the electrical connection pads are located and the manner of electrically connecting various pads together. Furthermore, it may be apparent that different circuit designs may derive from the choice of which electrical connect pads are connected and to which other pads they are connected. Still further, the function of the wire interconnection between pads may be different including the functions of electrical signal connection, electrical signal reception from external sources, electrical power connection and mechanical stabilization to mention a few examples.
In a previous discussion, it was presented that non semiconductor layers may comprise one or more of the stacked layers in the inventive art. It may be apparent that there could be a great diversity of applications which may derive from non-semiconductor layers. The layers may define energizing sources like batteries.
This type of layer in some cases may have a semiconductor acting as the supporting substrate for the chemical layers, or may have metallic or insulating substrates. Other layers may derive from layers which are primarily metallic in nature. These layers may define antennas, thermal conductive paths, or other functions. There may be numerous combinations of semiconducting and non-semiconducting layers that comprise useful application within the spirit of the inventive art herein.
Where electrical connection is made between stacked layers the electrical connection will need to be sealed after connection is defined. There are numerous methods that may be consistent with the art herein. For example, the epoxy or other adherent materials used to hold the various stacked layers together could be reapplied to the regions with electrical interconnect. Additionally, passivation films may be deposited across the entire device to encapsulate the regions that were used for interconnection. It may be apparent to one skilled in the art that numerous encapsulating and sealing schemes may be useful within this art to protect, strengthen and seal the stacked layer device and its interconnections and interconnection regions.
Assembling Stacked Functionalized Layer Inserts Proceeding to Fig. 5, item 500, a close up view of an exemplary apparatus to assemble stacked functionalized layer inserts is demonstrated. In the example, a stacking technique where the stacked layers do not align on either side of the layer is shown. Items 440, 441 and 442 again may be silicon layers. On the right side of the Fig. it may be seen that the right side edge of the items 440, 441 and 442 do not align with each other, as they may do. Such a stacking methodology may allow the insert to assume a three dimensional shape similar to that of the general profile of an ophthalmic lens. Such a stacking technique may allow for the layers to be made from the largest surface area as possible. In layers that are functional for energy storage and circuitry such surface area maximization may be important.
In general many of the features of the previously described stacked inserts may be observed in Fig. 5 including stacked functional layers 440, 441 and 442;
stacked insulating layers 450 and 451; and interconnections 430 and 431. Additionally a supporting jig, item 510, may be observed to support the stacked functionalized layer insert as it is being assembled. It may be apparent that the surface profile of item 510 may assume a large number of shapes which will change the three dimensional shape of inserts made thereon.
In general, a jig 510 may be provided with a predetermined shape. It may be coated with different layers, item 520, for a number of purposes. In a non-limiting exemplary sense, the coating may first comprise a polymer layer that will allow easy incorporation of an insert into the base material of an ophthalmic lens, and may even be formed from a polysilicone material. An epoxy coating may then be deposited upon the polysilicone coating to adhere the bottom thin functional layer 440 to the coating 520. The bottom surface of a next insulating layer 450 may then be coated with a similar epoxy coating and then placed into its appropriate location upon the jig. It may be clear that the jig may have the function of aligning the correct placement of the stacked layers relative to each other as the device is assembled. In repetitious fashion, the rest of the insert may then be assembled, the interconnections defined and then the insert encapsulated. The encapsulated insert may then be coated from the top with a polysilicone coating. In the case that use a polysilicone coating for item 520 is used, the assembled insert may be dissociated from the jig 510 by hydration of the polysilicone coating.
The jig 510 may be formed from numerous materials. The jig may be formed and made of similar materials that are used to make molding pieces in the manufacture of standard contact lenses. Such a use could support the flexible formation of various jig types for different insert shapes and designs. , Alternatively, the jig may be formed from materials that either in their own right or with special coatings will not adhere to the chemical mixtures used to adhere the different layers to each other. It may be apparent that numerous options may exist for the configuration of such a jig.
Another aspect of the jig demonstrated as item 510 is the fact that its shape physically supports the layers upon it. The interconnection between the layers may be formed by wire bonding connection. In the process of wire bonding significant force is applied the wire to ensure it forms a good bond. Structural support of the layers during such bonding could be important and could be performed by the supporting jig 510.
Still another function of the jig demonstrated as item 510 is that the jig may have alignment features on it that allow for the alignment of pieces of the functionalized layers to be aligned both relative to each other linearly and radially along the surfaces. The jig may allow the alignment of azimuthal angle of the functional layers relative to each other around a center point. Regardless of the ultimate shape of the insert produced it may be apparent that the assembly jib may be useful in insuring that the pieces of the insert are properly aligned for their function and correct interconnection.
Proceeding to Fig. 6, a more generalized discussion of shapes of stacked layer inserts may be had. In a subset of the generality of shapes consistent with the art, some sample variation in shape is shown. For example, item 610 shows a top view of a stacked insert which has been formed from essentially circular layer pieces.
The region shown with cross hatching 611 may be an annular region where layer material has been removed. However, it may be apparent that the pieces of the stacked layers used form the insert could be disks without an annular region. Although, such a non-annular insert shape may be of limited utility in an ophthalmic application the spirit of the inventive art herein is not intended to be limited by the presence of an internal annulus.
Item 620 may demonstrate a stacked functional layer insert. As shown in item 621, the layer pieces may be discrete not only in the stacking direction but also around the azimuthal direction perpendicular to the stacking direction. Semicircular pieces may be used to form the insert. It may be apparent that in shapes that have an annular region, which partial shapes could be useful to reduce the amount of material that would need to be "diced" or cut out after the layer material is formed into its function.
Proceeding further, item 630 demonstrates that non radial, non-elliptical and non-circular insert shapes could be defined. As shown in item 630, rectilinear shapes may be formed, or as in item 640 other polygonal shapes. In a three dimensional perspective pyramids, cones and other geometrical shapes could result from the different shapes of the individual layer pieces used to form the insert. In the three dimensional perspective it may be noted that the individual layers which have heretofore been represented as planar or flat layer piece themselves may assume degrees of freedom in three dimensions. When the silicon layers are thinned sufficiently they are able to bend or contort around their typical flat planar shape. This additional degree of freedom for thin layers allows for even further diversity of shapes that may be formed with stacked integrated component devices.
In a more general sense it may be apparent to one skilled in the arts that a vast diversity of component shapes may be formed into device shapes and products to make stacked integrated component devices, and these devices may assume a wide diversity of functionality, including in a non-limiting sense energization, signal sensing, data processing, communications both wired and wireless, power management, electromechanical action, control of external devices and the broad diversity of function that layered components may provide.
Powered Layers Referring now to Fig. 7, item 700, one or more layers of a functionalized stack of substrates may include a thin film electrical power source, 706. The thin electrical power source may be viewed essentially as a battery on a substrate.
A thin film battery (sometimes referred to as a TFB) may be structured on a suitable substrate, such as silicon, using known deposition processes to deposit materials in thin layers or films. The deposition process for one of these thin film layers may include, sputter deposition and may be used to deposit various materials.
After a film is deposited, it may be processed before a next layer is deposited. A
common process on a deposited film may include lithography or masking techniques that then allow etching or other material removing techniques to be performed thus allowing the film layer to have a physical shape in the two dimensions of the substrate surface.
In Fig. 7, item 700 an exemplary thin film processing flow may be depicted. A
thin film battery will typically be built upon a substrate, in this flow the substrate is depicted in an exemplary sense as an Aluminum Oxide (A1203), item 701. A
typical layer for electrical contact may next be deposited upon the substrate as shown in the Fig. 7 as item 702 where a cathode contact may be formed by a thin film deposition of Titanium and Gold upon the substrate. As may be apparent in Fig. 7 this film may then be patterned and etched, for example by a sputter etch technique or a wet etch technique to yield the shape as shown in item 702. A next step in an exemplary process would be to form the cathode layer as a film upon the cathode contact, item 703. One of the commonly utilized cathode films may include Lithium Cobalt Oxide (LiCo02) and as shown in Fig.7, it too may have patterning processes performed upon it. A next step, as shown as item 704, may be to deposit a thin film to form an electrolyte layer in the battery. There may be numerous material choices and forms for the electrolyte layer, but in an exemplary sense a polymer layer of Lithium Phosphorous OxyNitride (LiPON) may be used. Proceeding further to item 705, the thin film stack may be further processed with a deposition of Lithium for an anode layer and then a copper layer to act as the anode contact layer and like the other layers then imaged for an appropriate shape for contact features or other similar features. The thin film battery may then be realized by encapsulating the film stack in passivation and sealing layers. In exemplary fashion, the layers may be encapsulated with Parylene and Titanium or with Epoxy and Glass layers as shown in item 706. As with other layers there may be patterning and etching of these final layers, for example to expose features where the encapsulated battery may be electrically contacted to. It may be apparent to one skilled in the art, that there are an abundant set of material choices for each of the layers.
As described for item 706, enclosure in packaging may be used to prevent ingress of one or more of: oxygen, moisture, other gasses and liquids. There may therefore be provided packaging in one or more layers which may include one or more of an insulating layer, which as a non-limiting may include for example parylene, and an impermeable layer, which may include for example metals, aluminum, titanium, and similar materials which form an impermeable film layer. An exemplary means of forming these layers may include application by deposition onto a formed thin film battery device. Other methods of forming these layers may include applying organic materials, as for example epoxy, in conjunction with pre-shaped impermeable materials. The preshaped impermeable material may include the next layer of the integrated component device stack. The impermeable material may include a precision formed /cut glass, alumina, or silicon cover layer.
In, for example, a stacked integrated component device for an ophthalmic device; a substrate may include one that is able to withstand high temperatures, as for example 800 deg. C, without chemical change. Some substrates may be formed from material which provides electrical insulation and alternatively some substrates may be electrically conductive or semi-conductive. These alternative aspects of the substrate material, nonetheless, may be consistent with a final thin film battery that may form a thin component which may be integrated into a stacked integrated component device and provide at least in part the energization function of the device.
In a thin film battery where the thin film battery is a thin component of a stacked integrated device, the battery may have connection to the other thin components through access with opening in the passivation films at the contact pads shown as items 750 on item 706 of figure 7 item 700. Contact may be made through contact pads on the reverse side of the substrate from that shown for items 750.
Contact pads on the reverse side could be electrically connected to the thin film battery through the use of a via that is formed through the substrate which has a conductive material on the via sidewalls or filling the via. Finally, contact pads may be formed on both the top and bottom of the substrate. Some of these contact pads may intersect the contact pads of the thin film battery, but alternatives may include contact pads through the substrate where no connection is made to the battery. As may be apparent to one skilled in the arts, there may be numerous manners to interconnect through and to interconnect within a substrate upon which a thin film battery is formed.
The disclosure presented herein may relate to the functions that the electrical connections may perform. Some interconnections may provide an electrical connection path for components within the stack of integrated component devices and their interconnection with devices outside the integrated component device stack. In relation to connection outside of the device stack, this connection is made via a direct electrical conduction path. The connection outside of the package may be made in a wireless manner; wherein the connection is made through a manner including radio frequency connection, capacitive electrical communication, magnetic coupling, optical coupling or another of the numerous means that define manners of wireless communication.
Wire Formed Power Source Referring now to Fig. 8, an exemplary design of a power source, item 800, which includes a battery, 810, formed about a conductive wire, 820, are depicted. Item 820 may include a fine gauge copper wire, which may be used as a support.
Various battery component layers, which schematically are demonstrated as the rings evident in item 810, may be built up using batch or continuous wire coating processes. In this manner, a very high volumetric efficiency, which may reach or exceed 60 % of active battery materials, can be achieved in a convenient form factor that is flexible. A thin wire may be utilized to form small batteries, such as, in a non-limiting example, a battery whose stored energy may include a range measured by milliamp hours.
The voltage capability of such a wire based battery component may be approximately 1.5 volts. It may be apparent to a skilled artisan, that larger batteries and higher voltages may also be scaled, for example by designing the end device to connect single batteries in parallel or in series. The numerous manners in which the inventive art may be used to create useful battery devices are within the scope of the present invention.
Referring to Fig. 9, item 900, a depiction of how a wire based battery component may be combined with other components is made. In an example, item may represent an ophthalmic device whose function may be controlled or altered by electrical means. When such a device is part of a contact lens, the physical dimensions that components occupy may define a relatively small environment.
Nevertheless, a wire based battery; item 920 may have an ideal form factor for such an arrangement, existing on the periphery of such an optical component in a shape that a wire may be formed into.
Referring now to Fig. 10, item 1000, the result of processing using an exemplary method for forming wire batteries is illustrated. These methods and the resulting products define a wire based battery. Initially, a copper wire, item 1010, of high purity such as those available from a commercial source, for example McMaster Carr Corp. may be chosen and then coated with one or more layers. It may be apparent that there exist numerous alternative choices of the type and composition of the wire that may be used to form wire based batteries.
A zinc anode coating may be used to define an anode for the wire battery as shown as item 1020. The anode coating may be formulated from zinc metal powder, polymer binders, solvents, and additives. The coating may be applied and immediately dried. Multiple passes of the same coating may be used to achieve a desired thickness.
Continuing with Fig. 10, the anode and cathode of the wire battery may be separated from each other. A separator coating, item 1030, may be formulated from non-conductive filler particles, polymer binders, solvents, and additives. The method of application of the separator may be a coating application method similar to that used to coat the anode layer 1020.
A next step in processing the exemplary wire battery of item 1000 is forming a cathode layer. This cathode, item 1040 may be formed with silver oxide cathode coating. This silver oxide coating may be formulated from Ag20 powder, graphite, polymer binders, solvents, and additives. In similar fashion to the separator layer a common coating application method may be used as was used for other layers of the wire battery.
After a collector is formed, the exemplary wire battery may be coated with a layer to collect current from the cathode layer. This layer may be a conductive layer from a carbon impregnated adhesive. Alternatively, this layer may be a metal, for example Silver, impregnated adhesive. It may be apparent to one skilled in the art that there are numerous materials that may support forming a layer to enhance the collection of current along the battery surface. Electrolyte (potassium hydroxide solution with additives) may be applied to the finished battery to complete construction.
In a wire battery, the layers that are used to form the battery may have an ability to evolve gasses. The materials that form the battery layers may have a sealant layer placed around the battery layers to contain the electrolyte and other materials within the confines of the battery and to protect the battery from mechanical stresses.
Nevertheless, this sealant layer is typically formed in a manner that allows the diffusion of the evolved gasses through the layer. Such a sealant layer may include silicone or fluoropolymer coatings; however, any material which is used in the state of the art to encapsulate batteries of this type may be used.

Components of Stacked Multilayer Interconnection As mentioned in prior description, the layers of a stacked integrated component device may typically have electrical and mechanical interconnections between them.
A description has been given of certain interconnection schemes in which for example wire bonds, are included in sections preceding this discussion. Nevertheless, it may be helpful to summarize some of the types of interconnection in their own right to help in explanation of the art.
One of the common types of interconnection derives from the use of a "solder ball." A solder ball interconnection is a type of packaging interconnection that has been used for decades in the semiconductor industry, typically in so-called "flip chip"
applications where chips are connected to their packaging by inverting a diced electronic "chip," that has deposited solder balls on its interconnections, onto a package that has aligned connection pads to connect to the other side of the solder ball.
Heat treatment may allow the solder ball to flow to a certain degree and form an interconnection. The state of the art has continued its progress so that the solder ball type of interconnection may define an interconnection scheme that occurs on either or both sides of a layer. Additional improvement has occurred to decrease the dimension of solder balls that may reliably be used to form interconnections. The size of the solder ball may be 50 microns in diameter or smaller.
When a solder ball interconnection is used between two layers, or more generally when an interconnection scheme is used that creates gaps between two layers, a process step of "underfill" may be used to place adhesive material into the gaps to provide adhesive mechanical connection and mechanical support of the two layers. There are numerous manners to underfill a set of layers that have been interconnected. In some manners the underfill adhesive is pulled into the gap area by capillary action. The underfill adhesive may be made to flow into a gap by pressurizing the liquid into the gap region. An evacuated state in the gap area may be formed by pulling a vacuum upon the layered device and then following this with application of the underfill material. Any of the numerous manners to underfill a gap in two layered materials are consistent with the art herein described.
Another evolving technology of interconnection relates to interconnection of one side of a layered component to the other side by a via that cuts through the layer ¨
such a feature is typically called a through via. The technology has also been around for decades in various forms, however the state of the art has improved where very small vias in the 10 micron or less diameter dimension are possible with extremely large aspect ratios possible as well, especially when the layered material is formed of Silicon. Regardless of the layer material, a through via may form an electrical interconnection between the two surfaces of a layer with a metallic; however, when the layer is a conductive or semiconductive material, the through via must have an insulator layer insulating the metallic interconnection from the layer itself.
The through via may penetrate through the entire layered substrate. Alternatively, the through via may penetrate the substrate but then intersect with a deposited feature on the surface of the substrate; from the back side.
In through vias where the via intersects with a metal pad on one side of the layer that metal pad may be interconnected to a different layer with numerous manners including solder balls and wire bonds. In the case that the via is filled with metal and penetrates the entire layered substrate it may be useful for interconnections to be formed by solder balls on both sides of the interconnecting via.
Another interconnection occurs when a layer is formed which only has through vias and metal routing line upon it. In some cases, such an interconnection device may be called an interposer. Since the interposer layer may only have metal routings and via interconnections there are some additional materials that the layer may be made of and therefore alternatives for how to create through vias in these materials.
As a non-limiting example, a silicon dioxide or quartz substrate may be the material of the layer.
In some cases this quartz layer may be formed by pouring melted quartz upon a substrate where metallic filaments protrude from the surface. These protrusions then form the metallic connections between the top and bottom surface of the quartz layer that results from this type of processing. The numerous manners of forming thin interconnecting layers comprise art useful in interconnecting stacked layers and therefore in the forming of stacked integrated component devices.
Another type of interconnection element is derived from the through substrate via art. If a through substrate via is filled with various layers including metal layers the resulting via may form a structure that can be cut. The via may be cut or "diced"
down its center forming a cut out half via. Interconnections of this type may be termed castellation interconnections. Such interconnections provide connection from a top surface to a bottom surface and the ability of interconnections from these surfaces; but as well the potential for interconnection from the side may derive from the structure of the "Castellation."
A number of interconnection and component integration technologies have been discussed herein. Nevertheless, the invention disclosed herein is intended to embrace a wide diversity of integration technologies and the examples, which are intended for illustration purposes, are not intended to limit the scope of the art.
Stacked Integrated Component Devices with Energization Proceeding to Fig. 11, item 1100 shows a Stacked Integrated Component Device with energization where there are 8 stacked layers present. There is a top layer 1110, which acts as a wireless communication layer. There is a technology layer 1115, which connects to the top layer 1110 and to an interconnect layer 1125 below it.
Furthermore, there are 4 battery layers depicted as item 1130. There may be a lower substrate layer, item 1135 where the substrate includes an additional antenna layer.
There may be numerous functions that could be performed.
Multiple Energization Elements in Stacked Integrated Component Devices Proceeding now to Fig. 12, item 1200, a schematic representation of an arrangement of the type shown in Fig. 11 may be seen. The multiple energization elements that were identified as items 1130 in Fig. 11 are now represented by individual identifiers. It may be apparent that the number and organization of the multiple elements are but one of many different arrangements and are depicted for illustrative purposes. Nevertheless, as shown the elements may be arranged in 4 banks of 3 or 4 elements as shown by items 1210 ¨ 1224. A first bank of elements, in this example, therefore may include 1210, 1211, 1212, and 1213. A second bank of elements may include items 1214, 1215, 1216 and 1217. A third bank of elements may be represented by elements 12112, 1219, 1220 and 1221. In addition, a fourth bank of elements may be represented by elements 1222, 1223 and 1224. In this example the fourth battery element in the fourth bank may not be connected, but may rather be used as an interconnection element through the battery element to the antenna element item 1291.

Each of these banks may share a common ground line for the three or four elements that are connected in the bank. For illustrative purposes, baffl( one, including items 1210, 1211, 1212 and 1213 may share a common ground line shown as item 1230. Additionally, each of the elements may then have a separate line connecting them to the interconnect layer which may be represented by the circuit element 1290.
It may be clear that numerous differences in the connection, count and in fact the make-up of each battery element may comprise art within the scope of this inventive art. Moreover, it may be possible that each battery element has both a common and a biased electrode separately connected to the interconnect layer.
As mentioned, in some arrangements of the type shown in item 1200, where banks of battery elements share a common ground that battery element 1213 may share the common bank a common connection, item 1230 and also have its own bias connection of item 1235. These connections may interface with the interconnection element 1290 and then continue on to the power management element identified in this figure as item 1205. The two connections may have corresponding input connections into the power management unit where 1240 may be a continuation of the bank a common ground connection 1230 and item 1245 may be a continuation of the battery element 1213 bias connection 1235. Thus, the individual battery element may be connected to the power management entity and switches may control how it is electrically connect to further elements.
The four banks of fifteen multiple energization units may all in fact be connected in a parallel fashion generating a raw battery power supply that has the same voltage condition of the battery elements and a combined battery capacity of the fifteen units. The power management unit, 1205, may connect each of the fifteen elements 1210-1224 in such a parallel fashion. The power management element may refine and alter the input power to result in a refined power output that will be supplied to the rest of the stacked integrated component device. It may be apparent that numerous electrical refinements may be performed by the power management element, including in a non-limiting sense regulating all the elements to match a standard reference voltage output; multiplying the voltage of the individual elements, regulating the current outputted by the combined battery elements and many other such refinements.

Whatever conditioning of the power conditions of the combination of 15 elements may be performed, the raw output of the power management unit may be connected to the interconnection layer as shown by element 1250. This power supply may be passed through the interconnection device and electrically fed to the integrated passive device element 1206.
Within the integrated passive device element, 1206 there may be capacitors.
The raw power supply connection that comes from the interconnect 1255 may be used to charge the capacitors to the voltage condition of the raw power supply. The charging may be controlled by an active element, or it may just be passed onto the capacitor element. The resulting connection of the capacitor may then be identified as a first power supply condition for the stacked integrated component devices as indicated as element 1260 in item 1200. While the storing of energy in capacitors may be carried out in a separate integrated passive device element, in this case depicted as item 1206, capacitors may be included as part of the power management device itself or on the other components that are drawing power from the power management device. As well, there may a combination of capacitors in the integrated passive devices as well as capacitors in the power management element and in the elements that otherwise draw current in the stacked integrated component device with energization.
There may be numerous motivations for conditioning the power provided by multiple energization units. An exemplary motivation may derive from the power requirements of the components that are connected. If these elements have different operating states that require different current conditions, then the current draw of the highest operating state current draw may be buffered by the presence of the capacitors.
Thus, the capacitors may store significantly more current capacity then the fifteen elements may be able to provide at a given point in time. Depending on the conditions of the current drawing element and of the nature of the capacitors in the IPD
item 1206 there may still be a limitation of the amount of time a transient high current drawing state may occur for. Since the capacitors would need to be recharged after such a draw on their current capacity, it may be obvious as well that there would need to be a sufficient time between reoccurrences of the high current draw condition.
Therefore, it may be clear that there could be a large number of different design aspects relating to the number of energization units, their energy capacities, the types of devices they connect to and the design power requirements of the elements that are provided energy by these energization elements, the power management system and the integrated passive devices.
Voltage Supply Aspects of Multiple Energization Units:
In some examples of stacked integrated component devices with multiple energization units, the combination of the batteries into different series and parallel connections may be varied. When two energization units are connected in a series manner the voltage output of the energization elements add to give a higher voltage output. When two energization units are connected in a parallel manner the voltage remains the same but the current capacities add. It may be apparent that the interconnection of energization elements may be hardwired into the design of the element. However, the elements may be combined through use of switching elements to define different power supply conditions that may be dynamically defined.
Proceeding to Fig. 13, item 1300 an example of how switches may be used to define up to 4 different voltage supplies from the switched combination of four different energization elements is shown. It may be apparent, that the number of elements is provided in an exemplary sense and that many different combinations would define similar art within the spirit of the inventive art herein. As well, items 1301, 1302, 1303 and 1304 may define the ground connections of four different energization elements, or these may represent the ground connections of four different banks of energization elements as was demonstrated in the description of Fig.
12. In an exemplary sense, items 1305, 1306, 1307 and 1309 may define bias connections to each of the four depicted energization elements where the bias connection may assume a nominal voltage condition which may be 1.5 volts higher than the individual element ground connections, 1301,1302, 1303 and 1304.
As shown in Fig 13, there may be a microcontroller, item 1316, that is included in the stacked integrated component device which, among its various control conditions may control the number of power supplies that the multiple energization units are connected to define. The microcontroller may connect to a switch controller, item 1315, which may index control signal level changes from the microcontroller into state changes to the individual switches. For ease of presentation, the output of item 1315 is shown as a single item 1390. In this case, this signal is meant to represent the individual control lines that go out to the variety of switches depicted as items 1320 through 1385. There may be numerous types of switches that are consistent with the spirit of the inventive art herein, however in a non-limiting sense the switches may be mosfet switches in an exemplary sense. It may be apparent that any of the numerous mechanical and electrical type switches or other switch types that may be controlled by an electrical signal may comprise art within the spirit of the inventive art herein.
The control of the switches may be used to generate a number of different voltage conditions according to the circuit of item 1300. As a starting example, the switches may be configured so that there are two different voltage conditions defined;
both the 1.5 volt condition shown as item 1313 and the 3 volt condition shown as item 1312. There are numerous ways for this to happen, but for example the following manner will be described where two different elements are used for each of the voltage conditions. One may consider combining the elements represented by their ground connections of item 1301 and 1302 as the 1.5 volt supply elements. For this to occur, item 1305, the bias connection for the first energization element may be observed to already connect to the 1.5 volt supply line item 1313. For the second energization element bias connection, 1306 to connect to supply line 1313 switch 1342 may be turned to a connected state while switches 1343, 1344 and 1345 may be configured in a non-connected state. The ground connection of the second energization element may now be connected to the ground line, 1314 by activating switch 1330 to define the second, 3 volt supply line, item 1312, the common/ground connections of the third, 1303 and fourth, 1304 elements may be connected to the 1.5 volt supply line, 1313. For this to be enacted for the third element, switch 1321 may be activated, whereas switches 1320 and 1322 may be deactivated. This may cause connection 1303 to be at the 1.5 volt condition of element 1313. Switch 1350 may be deactivated in this case. For the fourth element, switch 1340 should be activated.
Switch 1341 may also be activated, however if it is inactive the same condition may exist. Switch 1370 may be deactivated so that the connection to the ground line is not made.
The bias connections of the third, 1307 and fourth elements, 1309 may now be connected to the 3 volt power line 1313. For the third element connection, switch 1363 should be active while switches 1362, 1364 and 1365 may be inactivated.
For the fourth element 1309, switch 1383 may be active while switches 1382, 1384 and 1385 may be inactive. This set of connections may result in such a two level (1.5 and 3 Volt) rough power supply condition through the exemplary use of 4 energization units.
The connections illustrated in Fig. 13, item 1300 may result in a number of different power supply conditions that may result from the use of four energization elements or four banks of energization elements. It may be apparent that many more connections of energization elements may be consistent with the inventive art herein.
In a non-limiting sense, there may be as few as two energization elements or any number more than that which may be consistent with a stacked integrated component device. There may be similar concepts for switching the connections of the ground and bias side of the energization elements into parallel and series connection which may result in multiples of the energization voltage of the individual energization element voltage; if the multiple energization elements are of the same type, or in combination voltages if different types and voltages of individual energization elements are included.
The description of utilizing the switching infrastructure of Fig. 13 may describe a set of connections that may be programmed into a Stacked Integrated component device and then utilized for the lifetime of the resulting device. It may be clear to one skilled in the art that alternative dynamic arrangements may exist. For example, a stacked integrated component device may have operational modes programmed where the number or nature of its power supplies may dynamically change. In a non-limiting exemplary sense, referring to Fig. 13, item 1310 may represent a power supply line of the device where in some modes it is not connected to any energization element connections as may be the case if switches 1345, 1365 and 1385 are in a non-activated connection. Other arrangements of this type may result in the connection of one or more of switches 1345, 1365 and 1385 resulting in a defined energization voltage for the power supply of item 1310. This dynamic activation of a particular voltage may also include deactivation at a later time or alternatively a dynamic change to another operating energization voltage. There may be a significant diversity of operational arrangements that may derive from the inventive art herein when stacked integrated component devices are included with multiple energization elements which may be connected in static and dynamic manners to other elements of the stacked integrated component device.
Self-Testing and Reliability Aspects of Multiple Energization Units:
The nature of energization elements may include aspects where when the elements are assembled into stacked integrated component devices they may have failure modes that may have the nature of an initial or "time zero" failure or alternatively be an aged failure where an initially function element may fail during the course of its use. The characteristics of stacked integrated component devices with multiple energization elements allow for circuitry and design which allow for remediating such failure modes and maintaining a functional operational state.
Returning to Fig. 12, item 1200 some self-testing and repair arrangements may be illustrated in an exemplary sense. Consider an arrangement in which the fifteen multiple energization elements, 1210 to 1224 are all connected in a parallel manner to define one power supply condition based on the standard operating voltage of each element. As mentioned, the nature of combining these multiple number of energization may allow the Stacked Integrated Component Device to perform self-testing and repair if an energization unit is defective or becomes defective.
Proceeding to Fig 14, item 1400 with the arrangement described above in mind, a sensing element may be used to detect the current flowing through the energization devices, depicted as item 1410. There may be numerous ways to set a condition in the stacked integrated component device where its current may be at a standard value. In an exemplary sense, the device could have a "Sleep mode" that it activates where the quiescent current draw is at a very low value. The sensing protocol may be as straightforward as inserting a resistive element into the power supply ground return line; although more sophisticated means of measuring current flow including magnetic or thermal transducers or any other means of performing electrical current metrology may be consistent with the spirit of the art herein. If the diagnostic measurement of the current flow, which may be represented as a voltage drop through the resistive element compared to a reference voltage, is found to exceed a standard tolerance then the exemplary self-test circuitry may proceed to determine if one of the energization elements is causing the excessive current draw condition. In proceeding, one exemplary manner of isolating the cause, as shown in item 1420 may be to first cycle through isolating one of the four banks at a time by disconnecting its ground return line. Referring back to Fig. 12, item 1200 for example the baffl( of elements 1210,1211, 1212 and 1213 may be the first bank to be isolated. Ground line 1230 may be disconnected. The same electrical current draw metrology may next be performed after the isolation as shown by item 1430. If the current sensed has now returned to a normal current draw then the problem may be indicated to occur in that bank.
If, alternatively, the current still remains out of a specified condition then the logical looping process can proceed to the next bank and back to item 1420. It may be possible that after looping through all the banks, which in this exemplary sense may be four banks, that the current draw is still outside of the normal tolerance. In such a case, the self-testing protocol may then exit its test of the energization elements and then either stop self-testing or initiate self-testing for some other potential current draw issue. In describing this self-testing protocol, it may be apparent that an exemplary protocol has been described to illustrate the concepts of the inventive art herein and that numerous other protocols may result in a similar isolation of individual energization units which may be malfunctioning.
Proceeding with the exemplary protocol, when the current flow returns to a normal specification when a bank has been isolated a next isolation loop may be performed. As shown in item 1440, the individual bank may again be activated however each of the four elements, for example 1210, 1211, 1212 and 1213 may have their bias connection disconnected, where for example 1235 may represent the bias connection of element 1213. Again, after an element is isolated, the current draw may again be sensed as shown in item 1450. If the isolation of an element returns the current draw to a normal state then that element may be indicated as defective and disconnected from the power supply system. In such cases, the self-test protocol may return item 1460 to its initial state (with the defective element now shut off) and retest that the current is within spec.
If the second looping process as shown by elements 1440 and 1450 proceeds through all energization elements in a bank without the current returning to an acceptable value the loop may end as shown by element 1441. In such an event, the self-test circuitry may then proceed to disable the entire bank from the power supply system, or it may proceed with a different manner of isolating elements in the bank;

which for this example is not depicted. There may be numerous manners to define self-diagnostic protocols for multiple energization units and the actions that are programed to occur based on these protocols.
Simultaneous Charging and Discharging in Multiple Energization Units Proceeding now to Fig. 15 item 1500, another arrangement that may result from integrating multiple energization elements into stacked integrated component devices may be seen. Where there are multiple energization elements, items 1511 to 1524, and there are elements within the stacked integrated device, 1500, which may be useful for recharging an energization element, there may be the ability to charge some of the elements which the remainder of the elements are simultaneously being used to power components which are functioning.
In an example, a stacked integrated component device containing multiple energization elements may be capable of receiving and processing rf signals from an antenna, 1570, comprised within its device. In some embodiments, there may exist a second antenna, item 1560, which is useful for receiving wireless energy from the environment of the device and passing this energy to a power management device, item 1505. In an exemplary sense, there may be included a microcontroller element, item 1555 which is both drawing power from the stacked integrated component device's energization units and also controlling the operations within the device. This microcontroller, 1555, may process input information to it using programmed algorithms to determine that the energization system of the fifteen elements, 1511 to 1524, may have enough energy to support the power requirements of the current device function where only a subset of the elements are being used to power the supply controlling circuitry, item 1540, of the power management device and the resulting power supply to the rest of the components that this circuitry defines. The remaining elements may then be connected to the charging circuitry, item 1545, of the power management component which may be receiving the power, as mentioned previously, that is being received by antenna 1560. In Fig. 15, item 1500, for example the stacked integrated component device may be placed into a state where three of the multiple energization elements, items 1522, 1523 and 1524 may be connected as for example shown form item 1523 as item 1150, to the charging electronics.
Simultaneously, the remaining 12 elements, items 1511 to 1521 may be connected to the supply circuitry, 1540 as is shown for example for element 1511 as item 1530. In this manner, a stacked integrated component device with energization may be enabled, through the use of multiple energization elements to operate in modes where the elements are both being charged and discharged simultaneously. The depiction of this exemplary simultaneous charging and discharging mode is provided as but one of numerous manners that multiple energization elements may be configured to perform multiple functions within a stacked integrated component device with energization, and it is not intended that such an example limits in any way the large diversity of arrangements that may be possible.

Claims (20)

1. A stacked integrated component device with multiple energization elements comprising:
a first layer comprising a first surface, and a second layer comprising a second surface, wherein at least a portion of the first surface lays above at least a portion of the second surface;
at least one electrical connection between an electrical contact on the first surface and an electrical contact on the second surface;
at least one electrical transistor, wherein the electrical transistor(s) are comprised in the stacked integrated component device;
a plurality of discrete energization elements, wherein the discrete energization elements are comprised in either or both of the first and second layers;
switching elements configured to combine the energization elements to define different power supply conditions; and a microcontroller configured to control the power supply conditions that the multiple energization elements are connected to define.
2. The stacked integrated component device of Claim 1, further comprising a switch controller configured to index control signal level changes from the microcontroller into state changes to the switching elements.
3. A stacked integrated component device with multiple energization elements comprising:
a first layer comprising a first surface, and a second layer comprising a second surface, wherein at least a portion of the first surface lays above at least a portion of the second surface;
at least one electrical connection between an electrical contact on the first surface and an electrical contact on the second surface;
at least one electrical transistor, wherein the electrical transistor(s) are comprised in the stacked integrated component device;

at least a first and a second discrete energization elements, wherein the discrete energization elements are comprised in either or both of the first and second layers;
and self-test circuitry comprising a sensing element configured to detect current flowing through the energization elements, the self-test circuitry being configured to determine if one of the energization elements is causing an excessive current draw condition.
4. The stacked integrated component device of Claim 3, wherein the self-test circuitry is configured to compare a voltage drop through a resistive element with a reference voltage.
5. The stacked integrated component device of Claim 3 or 4, wherein the self-test circuitry is configured to isolate the cause of the excessive current draw condition by cyclically isolating one at a time each of a plurality of banks of energization elements by disconnecting a ground return line of a said bank, and determining whether or not the current draw decreases.
6. The stacked integrated component device of Claim 5, wherein the self-test circuitry is configured to perform a further isolation loop if the current draw returns to a normal specification when a said bank has been isolated, wherein the self-test circuitry is configured to disconnect a bias of each energization element in the said bank and to sense the current draw after each energization element has been isolated.
7. The stacked integrated component device of Claim 6, wherein the self-test circuitry is configured to disable the entire said bank from a power supply system if the further isolation loop proceeds through all the energization elements in the said bank without the current draw returning to an acceptable value.
8. The stacked integrated component device of Claim 6 or 7, wherein the self-test circuitry is configured to disconnect a said energization element from the power supply system if the isolation of the said energization element returns the current draw to a normal state.
9. The stacked integrated component device of any preceding claim, wherein the discrete energization elements have a thicknesses less than 200 microns.
10. The stacked integrated component device of any preceding claim, additionally comprising:
a first electrical common connection, wherein the first electrical common connection is in contact with the ground connection of the first discrete energization element;
a second electrical common connection in contact with the ground connection of the second discrete energization element;
a first electrical bias connection in contact with the bias connection of the first discrete energization element; and a second electrical bias connection in contact with the bias connection of the second discrete energization element.
11. The stacked integrated component device of Claim 10, wherein the first electrical common connection is electrically connected to the second electrical common connection forming a single common connection for the at least two energization elements.
12. The stacked integrated component device of Claim 11, wherein the first electrical bias connection is electrically connected to the second electrical bias connection forming a single bias connection for the at least two energization elements.
13. The stacked integrated component device of Claim 10 wherein:
the first electrical bias connection is electrically connected to a first power supply input of a first integrated circuit; and the second electrical bias connection is electrically connected to a second power supply input of a first integrated circuit.
14. The stacked integrated component device of Claim 13 wherein:
the first integrated circuit generates a first output power supply; and a second integrated circuit is electrically connected to said first output power supply.
15. The stacked integrated component device of Claim 14 wherein:
the first integrated circuit combines, with at least a first switch, the first power supply input and the second power supply input to create a first output power supply, wherein the first output supply has the equivalent voltage capability of the first energization element and the second energization element; and the first output supply has the combined electrical current capability of the first energization element and the second energization element.
16. The stacked integrated component Device of claim 14 wherein:
the first integrated circuit combines, with at least a first switch, the first power supply input and the second electrical common connection to create a first output power supply, wherein the first output supply has the equivalent current capability of the lesser of the electrical current capability of the first energization element and the second energization element; and the first output supply has the combined electrical bias of the first energization element and the second energization element.
17. The stacked integrated component device of Claim 14, wherein all electrical connections from the first and second layers are not connected to any external wired connection of the stacked integrated component device.
18. The stacked integrated component device of any preceding claim, wherein the number of discrete energization elements within the stacked integrated component device exceeds three.
19. The stacked integrated component device of any preceding claim, wherein the number of raw power supplies formed as combinations of multiple energization elements exceeds one.
20. The stacked integrated component device of any preceding claim, wherein at least a first raw power supply formed as a combination of multiple energization elements is connected to a capacitive element.
CA2862640A 2012-01-26 2013-01-25 Multiple energization elements in stacked integrated component devices Abandoned CA2862640A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/358,916 2012-01-26
US13/358,916 US9110310B2 (en) 2011-03-18 2012-01-26 Multiple energization elements in stacked integrated component devices
PCT/US2013/023097 WO2013112803A2 (en) 2012-01-26 2013-01-25 Multiple energization elements in stacked integrated component devices

Publications (1)

Publication Number Publication Date
CA2862640A1 true CA2862640A1 (en) 2013-08-01

Family

ID=47741258

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2862640A Abandoned CA2862640A1 (en) 2012-01-26 2013-01-25 Multiple energization elements in stacked integrated component devices

Country Status (13)

Country Link
US (2) US9110310B2 (en)
EP (1) EP2807672A2 (en)
JP (2) JP6158227B2 (en)
KR (1) KR20140116539A (en)
CN (1) CN104205329B (en)
AU (1) AU2013212002B2 (en)
BR (1) BR112014018454A8 (en)
CA (1) CA2862640A1 (en)
HK (1) HK1204508A1 (en)
RU (1) RU2596629C2 (en)
SG (1) SG11201404171YA (en)
TW (1) TWI593080B (en)
WO (1) WO2013112803A2 (en)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9675443B2 (en) 2009-09-10 2017-06-13 Johnson & Johnson Vision Care, Inc. Energized ophthalmic lens including stacked integrated components
US9475709B2 (en) 2010-08-25 2016-10-25 Lockheed Martin Corporation Perforated graphene deionization or desalination
US8950862B2 (en) 2011-02-28 2015-02-10 Johnson & Johnson Vision Care, Inc. Methods and apparatus for an ophthalmic lens with functional insert layers
US9698129B2 (en) 2011-03-18 2017-07-04 Johnson & Johnson Vision Care, Inc. Stacked integrated component devices with energization
US9110310B2 (en) * 2011-03-18 2015-08-18 Johnson & Johnson Vision Care, Inc. Multiple energization elements in stacked integrated component devices
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US9889615B2 (en) 2011-03-18 2018-02-13 Johnson & Johnson Vision Care, Inc. Stacked integrated component media insert for an ophthalmic device
US9804418B2 (en) 2011-03-21 2017-10-31 Johnson & Johnson Vision Care, Inc. Methods and apparatus for functional insert with power layer
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
TWI572941B (en) * 2012-02-28 2017-03-01 壯生和壯生視覺關懷公司 Methods and apparatus to form electronic circuitry on ophthalmic devices
US9482879B2 (en) 2012-02-28 2016-11-01 Johnson & Johnson Vision Care, Inc. Methods of manufacture and use of energized ophthalmic devices having an electrical storage mode
US9610546B2 (en) 2014-03-12 2017-04-04 Lockheed Martin Corporation Separation membranes formed from perforated graphene and methods for use thereof
US9844757B2 (en) 2014-03-12 2017-12-19 Lockheed Martin Corporation Separation membranes formed from perforated graphene and methods for use thereof
US9744617B2 (en) 2014-01-31 2017-08-29 Lockheed Martin Corporation Methods for perforating multi-layer graphene through ion bombardment
US10376845B2 (en) 2016-04-14 2019-08-13 Lockheed Martin Corporation Membranes with tunable selectivity
US10653824B2 (en) 2012-05-25 2020-05-19 Lockheed Martin Corporation Two-dimensional materials and uses thereof
US9834809B2 (en) 2014-02-28 2017-12-05 Lockheed Martin Corporation Syringe for obtaining nano-sized materials for selective assays and related methods of use
US10017852B2 (en) 2016-04-14 2018-07-10 Lockheed Martin Corporation Method for treating graphene sheets for large-scale transfer using free-float method
US8960899B2 (en) 2012-09-26 2015-02-24 Google Inc. Assembling thin silicon chips on a contact lens
US9592475B2 (en) 2013-03-12 2017-03-14 Lockheed Martin Corporation Method for forming perforated graphene with uniform aperture size
US10025114B2 (en) 2013-03-13 2018-07-17 Johnson & Johnson Vision Care, Inc. Hydrogel lens having raised portions for improved oxygen transmission and tear flow
US9429769B2 (en) 2013-05-09 2016-08-30 Johnson & Johnson Vision Care, Inc. Ophthalmic device with thin film nanocrystal integrated circuits
US9572918B2 (en) 2013-06-21 2017-02-21 Lockheed Martin Corporation Graphene-based filter for isolating a substance from blood
US9987808B2 (en) * 2013-11-22 2018-06-05 Johnson & Johnson Vision Care, Inc. Methods for formation of an ophthalmic lens with an insert utilizing voxel-based lithography techniques
US9731437B2 (en) * 2013-11-22 2017-08-15 Johnson & Johnson Vision Care, Inc. Method of manufacturing hydrogel ophthalmic devices with electronic elements
SG11201606287VA (en) 2014-01-31 2016-08-30 Lockheed Corp Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
CN105940479A (en) 2014-01-31 2016-09-14 洛克希德马丁公司 Methods for perforating two-dimensional materials using a broad ion field
US9841614B2 (en) * 2014-06-13 2017-12-12 Verily Life Sciences Llc Flexible conductor for use within a contact lens
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US9793536B2 (en) 2014-08-21 2017-10-17 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
CA2900271A1 (en) * 2014-08-21 2016-02-21 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US20170288196A1 (en) * 2014-08-21 2017-10-05 Johnson & Johnson Vision Care, Inc. Biocompatible rechargable energization elements for biomedical devices with electroless sealing layers
US9599842B2 (en) 2014-08-21 2017-03-21 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US9383593B2 (en) 2014-08-21 2016-07-05 Johnson & Johnson Vision Care, Inc. Methods to form biocompatible energization elements for biomedical devices comprising laminates and placed separators
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US9941547B2 (en) 2014-08-21 2018-04-10 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US9715130B2 (en) 2014-08-21 2017-07-25 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
CA2973472A1 (en) 2014-09-02 2016-03-10 Lockheed Martin Corporation Hemodialysis and hemofiltration membranes based upon a two-dimensional membrane material and methods employing same
US20160073503A1 (en) * 2014-09-08 2016-03-10 Aliphcom Strap band including electrodes for wearable devices and formation thereof
WO2016057867A1 (en) * 2014-10-10 2016-04-14 Chen Xiaoxi Kevin Durable hydrophilic coating produced by multiple stage plasma polymerization
US9784994B2 (en) 2014-12-06 2017-10-10 Winthrop Childers Device interaction for correcting presbyopia
US10345619B2 (en) * 2015-03-19 2019-07-09 Johnson & Johnson Vision Care, Inc. Thinned and flexible circuit boards on three-dimensional surfaces
JP2018528144A (en) 2015-08-05 2018-09-27 ロッキード・マーチン・コーポレーション Perforable sheet of graphene-based material
AU2016303049A1 (en) 2015-08-06 2018-03-01 Lockheed Martin Corporation Nanoparticle modification and perforation of graphene
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
WO2017180134A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Methods for in vivo and in vitro use of graphene and other two-dimensional materials
SG11201809015WA (en) 2016-04-14 2018-11-29 Lockheed Corp Two-dimensional membrane structures having flow passages
SG11201808961QA (en) 2016-04-14 2018-11-29 Lockheed Corp Methods for in situ monitoring and control of defect formation or healing
WO2017180141A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Selective interfacial mitigation of graphene defects
RU2017131634A (en) * 2016-09-12 2019-03-12 Джонсон Энд Джонсон Вижн Кэа, Инк. BATTERIES FOR TUBULAR BIOMEDICAL DEVICES
US20180074345A1 (en) * 2016-09-12 2018-03-15 Johnson & Johnson Vision Care, Inc. Clam shell form biomedical device batteries
US10734668B2 (en) * 2016-09-12 2020-08-04 Johnson & Johnson Vision Care, Inc. Tubular form biomedical device batteries
US20180076465A1 (en) * 2016-09-12 2018-03-15 Johnson & Johnson Vision Care, Inc. Tubular form biomedical device batteries with electroless sealing
JP6174232B1 (en) * 2016-11-25 2017-08-02 株式会社ユニバーサルビュー Pinhole contact lens and smart contact system
US10170449B2 (en) 2017-05-02 2019-01-01 International Business Machines Corporation Deformable closed-loop multi-layered microelectronic device
US10950912B2 (en) 2017-06-14 2021-03-16 Milwaukee Electric Tool Corporation Arrangements for inhibiting intrusion into battery pack electrical components
US11076946B2 (en) * 2017-11-16 2021-08-03 Verily Life Sciences Llc Flexible barrier layer including superelastic alloys
DE102018106304A1 (en) * 2018-03-19 2019-09-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft DC charging of a smart battery
US20210259609A1 (en) * 2020-02-20 2021-08-26 Teliatry, Inc. Implantable Nerve Transducer with Solid-State Battery
WO2023089574A1 (en) * 2021-11-19 2023-05-25 Kinneret Smart Waves Ltd. / Ksw Antennas A short antenna having a wide bandwidth

Family Cites Families (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3431327A (en) 1964-08-31 1969-03-04 George F Tsuetaki Method of making a bifocal contact lens with an embedded metal weight
US3291296A (en) 1964-10-26 1966-12-13 Lemkelde Russell Pipe nipple holder
US3375136A (en) * 1965-05-24 1968-03-26 Army Usa Laminated thin film flexible alkaline battery
US4268132A (en) 1979-09-24 1981-05-19 Neefe Charles W Oxygen generating contact lens
US4592944A (en) 1982-05-24 1986-06-03 International Business Machines Corporation Method for providing a top seal coating on a substrate containing an electrically conductive pattern and coated article
US4601545A (en) 1984-05-16 1986-07-22 Kern Seymour P Variable power lens system
US4787903A (en) 1985-07-24 1988-11-29 Grendahl Dennis T Intraocular lens
DE3727945A1 (en) 1986-08-22 1988-02-25 Ricoh Kk LIQUID CRYSTAL ELEMENT
US5219497A (en) 1987-10-30 1993-06-15 Innotech, Inc. Method for manufacturing lenses using thin coatings
US4816031A (en) 1988-01-29 1989-03-28 Pfoff David S Intraocular lens system
US5227805A (en) * 1989-10-26 1993-07-13 Motorola, Inc. Antenna loop/battery spring
US5112703A (en) 1990-07-03 1992-05-12 Beta Power, Inc. Electrochemical battery cell having a monolithic bipolar flat plate beta" al
US6322589B1 (en) 1995-10-06 2001-11-27 J. Stuart Cumming Intraocular lenses with fixated haptics
EP0693188B1 (en) * 1993-04-07 1999-10-27 Ttp Group Plc Switchable lens
US5478420A (en) 1994-07-28 1995-12-26 International Business Machines Corporation Process for forming open-centered multilayer ceramic substrates
US5596567A (en) 1995-03-31 1997-01-21 Motorola, Inc. Wireless battery charging system
US5682210A (en) 1995-12-08 1997-10-28 Weirich; John Eye contact lens video display system
JPH09266636A (en) * 1996-03-28 1997-10-07 Nippon Zeon Co Ltd Battery device of driver for medical apparatus
JP3001481B2 (en) * 1997-10-27 2000-01-24 九州日本電気株式会社 Semiconductor device and manufacturing method thereof
RU2154444C2 (en) * 1997-12-05 2000-08-20 Государственное научно-техническое предприятие "Эфкон" Method for manufacture of artificial eye lens
US6217171B1 (en) 1998-05-26 2001-04-17 Novartis Ag Composite ophthamic lens
US20070285385A1 (en) 1998-11-02 2007-12-13 E Ink Corporation Broadcast system for electronic ink signs
DE19858172A1 (en) 1998-12-16 2000-06-21 Campus Micro Technologies Gmbh Artificial lens implant for measuring eye internal pressure has telemetric endosystem for continuous pressure monitoring incorporated in peripheral rim of artificial lens
US6477410B1 (en) 2000-05-31 2002-11-05 Biophoretic Therapeutic Systems, Llc Electrokinetic delivery of medicaments
US6986579B2 (en) 1999-07-02 2006-01-17 E-Vision, Llc Method of manufacturing an electro-active lens
US6619799B1 (en) * 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
US6851805B2 (en) 1999-07-02 2005-02-08 E-Vision, Llc Stabilized electro-active contact lens
US7404636B2 (en) 1999-07-02 2008-07-29 E-Vision, Llc Electro-active spectacle employing modal liquid crystal lenses
JP2001045648A (en) * 1999-08-02 2001-02-16 Yazaki Corp Circuit breaker
US6364482B1 (en) 1999-11-03 2002-04-02 Johnson & Johnson Vision Care, Inc. Contact lens useful for avoiding dry eye
JP4172566B2 (en) * 2000-09-21 2008-10-29 Tdk株式会社 Surface electrode structure of ceramic multilayer substrate and method of manufacturing surface electrode
US6748994B2 (en) 2001-04-11 2004-06-15 Avery Dennison Corporation Label applicator, method and label therefor
US6769767B2 (en) * 2001-04-30 2004-08-03 Qr Spex, Inc. Eyewear with exchangeable temples housing a transceiver forming ad hoc networks with other devices
US6638304B2 (en) 2001-07-20 2003-10-28 Massachusetts Eye & Ear Infirmary Vision prosthesis
US6885818B2 (en) 2001-07-30 2005-04-26 Hewlett-Packard Development Company, L.P. System and method for controlling electronic devices
EP1304193A3 (en) 2001-10-10 2004-12-01 imt robot AG Method for automatically putting objects on a carrier
EP1316419A3 (en) 2001-11-30 2004-01-28 General Electric Company Weatherable multilayer articles and method for their preparation
US7763069B2 (en) 2002-01-14 2010-07-27 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
KR100878519B1 (en) * 2002-01-19 2009-01-13 삼성전자주식회사 Manufacturing method for optical disk
ITMI20020403A1 (en) 2002-02-28 2003-08-28 Ausimont Spa PTFE BASED WATER DISPERSIONS
EP1849589A3 (en) 2002-03-04 2009-03-25 Johnson and Johnson Vision Care, Inc. Use of microwave energy to dissassemble, release, and hydrate contact lenses
US20030164563A1 (en) 2002-03-04 2003-09-04 Olin Calvin Use of microwave energy to disassemble, release, and hydrate contact lenses
WO2003090611A1 (en) 2002-04-25 2003-11-06 E-Vision, Llc Electro-active multi-focal spectacle lens
US6852254B2 (en) 2002-06-26 2005-02-08 Johnson & Johnson Vision Care, Inc. Methods for the production of tinted contact lenses
US7062708B2 (en) 2002-09-19 2006-06-13 International Business Machines Corporation Tree construction for XML to XML document transformation
US6906436B2 (en) 2003-01-02 2005-06-14 Cymbet Corporation Solid state activity-activated battery device and method
CN100403477C (en) * 2003-01-02 2008-07-16 Cymbet公司 Solid-state battery-powered devices and manufacturing methods
JP3981034B2 (en) 2003-03-25 2007-09-26 富士フイルム株式会社 Color image acquisition device and color electronic camera
US7195353B2 (en) 2003-08-15 2007-03-27 E-Vision, Llc Enhanced electro-active lens system
US7581124B1 (en) 2003-09-19 2009-08-25 Xilinx, Inc. Method and mechanism for controlling power consumption of an integrated circuit
EP1760515A3 (en) 2003-10-03 2011-08-31 Invisia Ltd. Multifocal ophthalmic lens
US7289260B2 (en) * 2003-10-03 2007-10-30 Invisia Ltd. Multifocal lens
US7311398B2 (en) 2004-03-05 2007-12-25 Koninklijke Philips Electronics N.V. Variable focus lens
WO2005101111A2 (en) * 2004-04-13 2005-10-27 Arizona Board Of Regents On Behalf Of The University Of Arizona Patterned electrodes for electroactive liquid-crystal ophthalmic devices
CA2467321A1 (en) 2004-05-14 2005-11-14 Paul J. Santerre Polymeric coupling agents and pharmaceutically-active polymers made therefrom
US8766435B2 (en) 2004-06-30 2014-07-01 Stmicroelectronics, Inc. Integrated circuit package including embedded thin-film battery
EP1622009A1 (en) 2004-07-27 2006-02-01 Texas Instruments Incorporated JSM architecture and systems
JP4361565B2 (en) 2004-09-21 2009-11-11 株式会社日立コミュニケーションテクノロジー Node device, packet control device, wireless communication device, and transmission control method
KR101301053B1 (en) 2004-11-02 2013-08-28 이-비젼 엘엘씨 Electro-active intraocular lenses
CA2586235C (en) * 2004-11-02 2014-06-03 E-Vision, Llc Electro-active spectacles and method of fabricating same
US8778022B2 (en) 2004-11-02 2014-07-15 E-Vision Smart Optics Inc. Electro-active intraocular lenses
CN101094626A (en) * 2004-11-02 2007-12-26 E-视觉有限公司 Electro-active intraocular lenses
JP2008518706A (en) 2004-11-04 2008-06-05 エル・アンド・ピー・100・リミテッド Medical device
KR100877028B1 (en) 2005-01-04 2009-01-07 가부시키가이샤 아이스퀘어리서치 Solid­state image pickup device and method for manufacturing same
DE102005001148B3 (en) * 2005-01-10 2006-05-18 Siemens Ag Electronic unit, has metal housing coupled to MOSFET operated with high frequency, where housing is arranged to metal plate over electrically-isolated isolation layer, and heat sink electrically connected with metal plate or housing
JP2008529208A (en) * 2005-01-20 2008-07-31 オティコン アクティーセルスカプ Hearing aid with rechargeable battery and rechargeable battery
US7928591B2 (en) 2005-02-11 2011-04-19 Wintec Industries, Inc. Apparatus and method for predetermined component placement to a target platform
US7364945B2 (en) * 2005-03-31 2008-04-29 Stats Chippac Ltd. Method of mounting an integrated circuit package in an encapsulant cavity
JP4790297B2 (en) * 2005-04-06 2011-10-12 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US7976577B2 (en) 2005-04-14 2011-07-12 Acufocus, Inc. Corneal optic formed of degradation resistant polymer
US7548040B2 (en) 2005-07-28 2009-06-16 Zerog Wireless, Inc. Wireless battery charging of electronic devices such as wireless headsets/headphones
US7835160B2 (en) * 2005-09-28 2010-11-16 Panasonic Corporation Electronic circuit connection structure and its manufacturing method
US20070090869A1 (en) * 2005-10-26 2007-04-26 Motorola, Inc. Combined power source and printed transistor circuit apparatus and method
US20070128420A1 (en) 2005-12-07 2007-06-07 Mariam Maghribi Hybrid composite for biological tissue interface devices
US8067402B2 (en) 2005-12-12 2011-11-29 Allaccem, Inc. Methods and systems for coating an oral surface
WO2007072781A1 (en) * 2005-12-20 2007-06-28 Nec Corporation Electrical storage device
US20070159562A1 (en) 2006-01-10 2007-07-12 Haddock Joshua N Device and method for manufacturing an electro-active spectacle lens involving a mechanically flexible integration insert
JP2007187454A (en) * 2006-01-11 2007-07-26 Toyota Motor Corp Insulation resistance drop detector
KR101286258B1 (en) 2006-02-21 2013-07-15 보르그워너 인코퍼레이티드 Segmented core plate and friction disc
US7794643B2 (en) 2006-03-24 2010-09-14 Ricoh Company, Ltd. Apparatus and method for molding object with enhanced transferability of transfer face and object made by the same
CN100456274C (en) * 2006-03-29 2009-01-28 深圳迈瑞生物医疗电子股份有限公司 Multi-CPU system of easy expansion
JP4171922B2 (en) 2006-04-12 2008-10-29 船井電機株式会社 Mute device, liquid crystal display TV, and mute method
JP4923704B2 (en) 2006-04-28 2012-04-25 ソニー株式会社 Optical element molding apparatus and molding method
JP4918373B2 (en) * 2006-04-28 2012-04-18 オリンパス株式会社 Stacked mounting structure
US8197539B2 (en) 2006-05-05 2012-06-12 University Of Southern California Intraocular camera for retinal prostheses
EP2030101A4 (en) 2006-06-12 2009-12-02 Johnson & Johnson Vision Care Method to reduce power consumption with electro-optic lenses
JP2008033021A (en) 2006-07-28 2008-02-14 Fuji Xerox Co Ltd Hologram recording method and hologram recording device
WO2008025061A1 (en) 2006-08-28 2008-03-06 Frankie James Lagudi Online hosted customisable merchant directory with search function
AU2007289295A1 (en) 2006-09-01 2008-03-06 Johnson & Johnson Vision Care, Inc. Electro-optic lenses employing resistive electrodes
US7324287B1 (en) * 2006-11-07 2008-01-29 Corning Incorporated Multi-fluid lenses and optical devices incorporating the same
TWI324380B (en) * 2006-12-06 2010-05-01 Princo Corp Hybrid structure of multi-layer substrates and manufacture method thereof
JP2008178226A (en) * 2007-01-18 2008-07-31 Fujitsu Ltd Power supply device and method of supplying power voltage to load device
AR064985A1 (en) 2007-01-22 2009-05-06 E Vision Llc FLEXIBLE ELECTROACTIVE LENS
AU2008218240B2 (en) * 2007-02-23 2014-01-30 E-Vision Smart Optics, Inc. Ophthalmic dynamic aperture
WO2008109867A2 (en) 2007-03-07 2008-09-12 University Of Washington Active contact lens
US20090091818A1 (en) 2007-10-05 2009-04-09 Haddock Joshua N Electro-active insert
US8446341B2 (en) 2007-03-07 2013-05-21 University Of Washington Contact lens with integrated light-emitting component
WO2008112468A1 (en) 2007-03-12 2008-09-18 Pixeloptics, Inc. Electrical insulating layers, uv protection, and voltage spiking for electro-active diffractive optics
TWI335652B (en) * 2007-04-04 2011-01-01 Unimicron Technology Corp Stacked packing module
TW200842996A (en) * 2007-04-17 2008-11-01 Advanced Semiconductor Eng Method for forming bumps on under bump metallurgy
US7818698B2 (en) 2007-06-29 2010-10-19 Taiwan Semiconductor Manufacturing Company, Ltd. Accurate parasitic capacitance extraction for ultra large scale integrated circuits
US8317321B2 (en) 2007-07-03 2012-11-27 Pixeloptics, Inc. Multifocal lens with a diffractive optical power region
US20100211186A1 (en) * 2007-08-09 2010-08-19 The Regents Of The University Of California Electroactive polymer actuation of implants
DE102007048859A1 (en) 2007-10-11 2009-04-16 Robert Bosch Gmbh Intraocular lens for being implanted in eyes of e.g. human, has lens body formed as form-changeable hollow body fillable with fluid, and micro pump provided for variation of fluid volume in lens body
US8608310B2 (en) 2007-11-07 2013-12-17 University Of Washington Through Its Center For Commercialization Wireless powered contact lens with biosensor
US20090175016A1 (en) * 2008-01-04 2009-07-09 Qimonda Ag Clip for attaching panels
EP2230993B1 (en) 2008-01-15 2018-08-15 Cardiac Pacemakers, Inc. Implantable medical device with antenna
TWI511869B (en) 2008-02-20 2015-12-11 Johnson & Johnson Vision Care Energized biomedical device
EP2099165A1 (en) 2008-03-03 2009-09-09 Thomson Licensing Deterministic back-off method and apparatus for peer-to-peer communications
AP2651A (en) 2008-03-04 2013-04-25 Natco Pharma Ltd Crystal form of phenylamino pyrimidine derivatives
JP2011515157A (en) 2008-03-18 2011-05-19 ピクセルオプティクス, インコーポレイテッド Advanced electroactive optical component devices
US20090243125A1 (en) * 2008-03-26 2009-10-01 Pugh Randall B Methods and apparatus for ink jet provided energy receptor
US7931832B2 (en) * 2008-03-31 2011-04-26 Johnson & Johnson Vision Care, Inc. Ophthalmic lens media insert
US8523354B2 (en) * 2008-04-11 2013-09-03 Pixeloptics Inc. Electro-active diffractive lens and method for making the same
FR2934056B1 (en) 2008-07-21 2011-01-07 Essilor Int METHOD FOR TRANSFERRING A FUNCTIONAL FILM PORTION
US8014166B2 (en) * 2008-09-06 2011-09-06 Broadpak Corporation Stacking integrated circuits containing serializer and deserializer blocks using through silicon via
US20100076553A1 (en) * 2008-09-22 2010-03-25 Pugh Randall B Energized ophthalmic lens
US9296158B2 (en) * 2008-09-22 2016-03-29 Johnson & Johnson Vision Care, Inc. Binder of energized components in an ophthalmic lens
JP4764942B2 (en) 2008-09-25 2011-09-07 シャープ株式会社 Optical element, optical element wafer, optical element wafer module, optical element module, optical element module manufacturing method, electronic element wafer module, electronic element module manufacturing method, electronic element module, and electronic information device
US9427920B2 (en) 2008-09-30 2016-08-30 Johnson & Johnson Vision Care, Inc. Energized media for an ophthalmic device
US8348424B2 (en) 2008-09-30 2013-01-08 Johnson & Johnson Vision Care, Inc. Variable focus ophthalmic device
US8092013B2 (en) 2008-10-28 2012-01-10 Johnson & Johnson Vision Care, Inc. Apparatus and method for activation of components of an energized ophthalmic lens
US9375885B2 (en) 2008-10-31 2016-06-28 Johnson & Johnson Vision Care, Inc. Processor controlled ophthalmic device
US9375886B2 (en) 2008-10-31 2016-06-28 Johnson & Johnson Vision Care Inc. Ophthalmic device with embedded microcontroller
NZ592645A (en) * 2008-11-20 2013-01-25 Insight Innovations Llc Biocompatible biodegradable intraocular implant system
US8636358B2 (en) * 2009-05-17 2014-01-28 Helmut Binder Lens with variable refraction power for the human eye
US8373235B2 (en) 2009-05-22 2013-02-12 Unisantis Electronics Singapore Pte Ltd. Semiconductor memory device and production method therefor
EP2306579A1 (en) * 2009-09-28 2011-04-06 STMicroelectronics (Tours) SAS Process for the fabrication of a lithium-ion battery in thin layers
US8784511B2 (en) * 2009-09-28 2014-07-22 Stmicroelectronics (Tours) Sas Method for forming a thin-film lithium-ion battery
US8137148B2 (en) * 2009-09-30 2012-03-20 General Electric Company Method of manufacturing monolithic parallel interconnect structure
US8837097B2 (en) * 2010-06-07 2014-09-16 Eaton Corporation Protection, monitoring or indication apparatus for a direct current electrical generating apparatus or a plurality of strings
US9259309B2 (en) 2010-06-20 2016-02-16 Elenza, Inc. Ophthalmic devices and methods with application specific integrated circuits
US8634145B2 (en) 2010-07-29 2014-01-21 Johnson & Johnson Vision Care, Inc. Liquid meniscus lens with concave torus-segment meniscus wall
KR101322695B1 (en) 2010-08-25 2013-10-25 주식회사 엘지화학 Cable-Type Secondary Battery
CA2810693A1 (en) 2010-09-07 2012-03-15 Elenza, Inc. Installation and sealing of a battery on a thin glass wafer to supply power to an intraocular implant
US8767309B2 (en) 2010-09-08 2014-07-01 Johnson & Johnson Vision Care, Inc. Lens with multi-convex meniscus wall
EP2640315B1 (en) 2010-11-15 2018-01-10 Elenza, Inc. Adaptive intraocular lens
US8950862B2 (en) 2011-02-28 2015-02-10 Johnson & Johnson Vision Care, Inc. Methods and apparatus for an ophthalmic lens with functional insert layers
US10451897B2 (en) * 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US9698129B2 (en) * 2011-03-18 2017-07-04 Johnson & Johnson Vision Care, Inc. Stacked integrated component devices with energization
US9110310B2 (en) * 2011-03-18 2015-08-18 Johnson & Johnson Vision Care, Inc. Multiple energization elements in stacked integrated component devices
US9889615B2 (en) 2011-03-18 2018-02-13 Johnson & Johnson Vision Care, Inc. Stacked integrated component media insert for an ophthalmic device
US9804418B2 (en) * 2011-03-21 2017-10-31 Johnson & Johnson Vision Care, Inc. Methods and apparatus for functional insert with power layer
US9900351B2 (en) 2011-07-20 2018-02-20 Genband Us Llc Methods, systems, and computer readable media for providing legacy devices access to a session initiation protocol (SIP) based network
JP6490425B2 (en) 2012-01-26 2019-03-27 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. Energized ophthalmic lens including a laminated monolithic component
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure

Also Published As

Publication number Publication date
HK1204508A1 (en) 2015-11-20
BR112014018454A2 (en) 2017-06-20
EP2807672A2 (en) 2014-12-03
KR20140116539A (en) 2014-10-02
RU2596629C2 (en) 2016-09-10
CN104205329A (en) 2014-12-10
SG11201404171YA (en) 2014-09-26
US9535268B2 (en) 2017-01-03
TW201349441A (en) 2013-12-01
US20120235277A1 (en) 2012-09-20
US9110310B2 (en) 2015-08-18
WO2013112803A2 (en) 2013-08-01
JP6158227B2 (en) 2017-07-05
TWI593080B (en) 2017-07-21
AU2013212002B2 (en) 2016-02-25
AU2013212002A1 (en) 2014-09-11
US20150309337A1 (en) 2015-10-29
WO2013112803A3 (en) 2013-10-10
JP6312904B2 (en) 2018-04-18
JP2015515115A (en) 2015-05-21
BR112014018454A8 (en) 2017-07-11
CN104205329B (en) 2017-07-18
RU2014134724A (en) 2016-03-20
JP2017199003A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
US9535268B2 (en) Multiple energization elements in stacked integrated component devices
AU2013211974B2 (en) Stacked integrated component devices with energization
US9703120B2 (en) Methods and apparatus for an ophthalmic lens with functional insert layers
US9804418B2 (en) Methods and apparatus for functional insert with power layer

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20180122

FZDE Discontinued

Effective date: 20200127